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Abstract The complexity of electricity markets calls for rich and flexible
modeling techniques that help to understand market dynamics and to derive
advice for the design of appropriate regulatory frameworks. Agent-Based
Computational Economics (ACE) is a fairly young research paradigm that
offers methods for realistic electricity market modeling. A growing number
of researchers have developed agent-based models for simulating electric-
ity markets. The diversity of approaches makes it difficult to overview the
field of ACE electricity research; this literature survey should guide the way
through and describe the state-of-the-art of this research area. In a con-
clusive summary, shortcomings of existing approaches and open issues that
should be addressed by ACE electricity researchers are critically discussed.

Key words Agent-Based Computational Economics, simulation, electric-
ity market modeling

1 Introduction

Because of the technical nature of the traded good, electricity markets rank
among the most complex of all markets operated at present. Supply and
demand have to be balanced in real time, considering transmission limits
and unit commitment constraints. The electricity sector is characterized by
multiple interlinked markets: fuel markets, markets for day-ahead scheduling
and those for real-time dispatch or balancing energy, bilateral trading and
auxiliary markets e.g. for emission allowances. Many energy firms are ver-
tically integrated and act on several markets simultaneously, thus further
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complicating their trading strategies. Besides, and given the oligopolistic
structure of almost all electricity markets, participants have the potential
to exert market power in many of these markets.

These complexities drive most classical modeling methods to their lim-
its. Equilibrium models either do not consider strategic bidding behavior
or assume that players have all relevant information about the other play-
ers’ characteristics and behavior; they also disregard the consequences of
learning effects from daily repeated interaction (Rothkopf 1999). Game
theoretical analysis is usually limited to stylized trading situations among
few actors, and places rigid — oftentimes unrealistic — assumptions on the
players’ behavior. Human-subject experiments can be applied to electricity
market research only with difficulties, because some expertise is necessary
to realistically imitate the bidding behavior of a power generator. Thus,
for many questions relevant in electricity market research, human-subject
experiments are not an appropriate method.

Given the complexity of the electricity sector and also its high impor-
tance for a competitive economy, researchers and practitioners are increas-
ingly willing to try new modeling methods in order to gain insights into
various aspects of power markets. Agent-based (AB) modeling is one ap-
pealing new methodology that has the potential to overcome some short-
comings of traditional methods. Within the last ten years, more and more
researchers have been developing electricity market models with adaptive
software agents. This field of research is still growing and maturing. Some
first attempts have already been revoked, others have gained popularity.

As the number of AB electricity models that have been published in
journals starts to increase, and given the high attractiveness of agent-based
approaches among researchers, this survey might help to get a sense of the
state-of-the-art of the whole research field.! This literature review is sup-
posed to guide newcomers or interested researchers through the intricate
research field and points out the weaknesses and open issues that current
approaches face. It is structured as follows: Section 2 gives a brief introduc-
tion to the methodology of Agent-Based Computational Economics (ACE);
Section 3 presents the approaches and findings of relevant scientific papers
in ACE electricity market research, and Section 4 summarizes the contri-
butions made by the papers, points out some shortcomings of the current
state-of-the-art, and suggests some lines of future work in the research field.
Finally, Section 5 concludes.

1We attempt to give a very broad overview of AB electricity market models and
present the most relevant work in detail. The nature of a fast-growing and young
research field entails the difficulty to account for all existing research; although
great care has been taken to consider as many papers as possible, it cannot be
guaranteed that the survey at hand is exhaustive.
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2 Methodology of Agent-Based Computational Economics
2.1 Motivation for AB Methods in Economics

The electricity sector, and economies in general are characterized by difficult
real-world aspects, such as asymmetric information, imperfect competition,
strategic interaction, collective learning, and the possibility of multiple equi-
libria (Tesfatsion 2006). Many of these factors can not — or only with dif-
ficulties — be accounted for with traditional economic modeling techniques.
Analytical approaches usually have to put strong and constraining assump-
tions on the agents that make up the economic system under study, in order
to set up elegant formal models.

When the concept of complexity came up, the focus in economic analysis
shifted from rational behavior and equilibrium towards heterogeneity and
adaptivity (a famous early example being the simulations of Axelrod 1997).
At the same time, the tremendous availability of computational resources
made it possible to set up large-scale and detailed computational models
that allow a high degree of design flexibility. AB models offered the possi-
bility of not only describing relationships in complex systems, but growing
them in an artificial environment (Epstein and Axtell 1996). AB simula-
tion is, thus, a third way between fully flexible linguistic models and more
transparent and precise but highly simplified analytical modeling (Richiardi
2004); the resulting models are dynamic and ezecutable, so that their evolv-
ing behavior can be observed step by step (Holland and Miller 1991).

2.2 Procedure and Main Concepts

ACE researches the two-way feedback between regularities on the macro
level and interaction of economic actors on the micro level. The actors are
modeled as computational agents. The concept of (computational or soft-
ware) “agents” stems from the fields of Distributed Artificial Intelligence
(DAI) and Multi-Agent Systems (MAS). Common definitions of the term
characterize them as autonomous, reactive, goal-oriented, or socially able,
just to cite a few (for a discussion of the term, see e.g. Franklin and Graesser
1997). However, as Drogoul et al. (2003) correctly annotate, these features
do not all translate into computational properties in agent-based simula-
tions. Most AB models do not require agents to exhibit all the characteris-
tics of the software agents from the DAI or MAS world; instead, the most
important features of agents in AB models is that they are goal-oriented
and adaptive. All agents are assigned a value, like e.g. payoff, fitness, or
utility, the amount of which is dependent on their actions in the environ-
ment they are placed in. Under goal-oriented, we understand that agents
seek to maximize this value; adaptivity refers to the ability to learn which
actions to take in order to increase this value over time, and so reach the
goal.
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In AB electricity simulations, the most common agents that make up the
population are generators, load serving entities, and a market/system oper-
ator. Depending on the research questions, the simulation can also contain
regulator agents, a transmission system representation, retail customers, or
others. Agents can also be composed of other agents, thus permitting hier-
archical constructions like utilities.

Another important aspect of agents in AB models is heterogeneity. AB
modelers are not restricted to equally sized or symmetric firms, or to other
constraints that arise from the limits of analytical modeling. Instead, every
agent making up the modeled economy can be designed independently. The
economy then evolves as a result of the interplay of these heterogeneous
agents, i.e. from the bottom-up. The modeling procedure can be described
as follows (Tesfatsion 2002): After having (i) defined the research ques-
tions to resolve, the ACE modeler (ii) constructs an economy comprising
an initial population of agents and subsequently (iii) specifies the initial
state of the economy by defining the agents’ attributes (e.g. type charac-
teristics, learning behavior, knowledge about itself and other agents) and
the structural and institutional framework of the electricity market within
which the agents operate; the modeler then (iv) lets the economy evolve
over time without further intervention — all events that subsequently occur
must arise from the historical time-line of agent-agent interactions, without
extraneous coordination; this procedure is followed by (v) a careful analysis
of simulation results and an evaluation of the regularities observed in the
data.

2.8 Applications and Open Issues

Following Tesfatsion (2006), current ACE research can be divided into four
strands: The empirical, or descriptive strand seeks to understand why and
how global regularities result from the interplay of agents on the micro scale.
Normative ACE research uses AB models as laboratories for economic de-
sign alternatives in order to test which policies, institutions, or processes
perform best in an environment of self-seeking agents. A third strand is
theory generation, i.e. the structured analysis of dynamical behaviors of
economic systems under alternative initial conditions, in order to find nec-
essary conditions for global regularities to evolve. Finally, ACE researchers
continually seek to improve the methodology itself and develop tools that
facilitate setting up computational AB models. Most electricity related re-
search is centered around the second strand, i.e. normative research with
the aim of determining good market designs that leave little opportunity to
exercise market power.

Given the great flexibility that AB modeling allows, and given its po-
tential to represent complex economic systems, ACE can possibly become
one important pillar of electricity sector research. Besides its advantages,
however, some problems exist that researchers must be aware of and tackle
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in the future. Among the current weaknesses of the methodology, Tesfatsion
(2006) states that it is not yet clear how ACE models will be able to scale
up to provide empirically and practically useful models of large-scale sys-
tems with many thousands of agents. Besides, she annotates the difficulty
of validating ACE model outcomes against empirical data. Especially the
last point can clearly be observed when surveying the agent-based electricity
modeling literature (see also discussion in Section 4, where some suggestions
for further research into this problem are given).

3 Paper Summaries

The modeling approaches and findings described in the most relevant studies
are reviewed in the following. This review concentrates on AB simulation
models for the analysis of market structures and market design in wholesale
electricity trading. Aside from this, some researchers have applied agent-
based methods for examining electricity consumer behavior at the retail
level, e.g. Hamaéldinen et al. (2000), Roop and Fathelrahman (2003), Yu
et al. (2004), or Miiller et al. (2007); others provide agent-based decision
support tools for power market participants, e.g. Praga et al. (2004), Bernal-
Agustin et al. (2007), or Harp et al. (2000). These will not be discussed here.

3.1 Simulations Applying Model-Based Adaptation Algorithms

Some of the first AB simulation models of electricity systems define their
own representation of how agents adapt to the system they are placed in.
These learning representations are usually tailored for the specific design
of the simulated market(s). They do not explicitly rely on findings from
psychological research about learning or on developments from the DAIT or
MAS fields of agent learning. These — usually naive or intuitive formulations
— are termed model-based adaptation algorithms here. The most prominent
work in this field has been conducted at the London Business School; other
approaches, such as those by Visudhiphan and Ili¢, have also attracted in-
terest by researchers.

3.1.1 Analyzing Trading Arrangements in England and Wales - Bower, Bunn
et al. Bower and Bunn (2000) present an AB simulation model of the Eng-
land and Wales electricity market. The simulation is designed to compare
different market mechanisms, i.e. daily versus hourly bidding and uniform
versus discriminatory pricing.? Generator agents apply a simple reinforce-

2The study is motivated by the proposition that the mandatory pool-based
spot market, which existed since 1990, should be replaced by direct bilateral trad-
ing between generators and suppliers. This drastic change in the structure of
wholesale electricity trading in England and Wales had been proposed by the Of-
fice of Electricity Regulation as part of the Revised FElectricity Trading Arrange-
ments in 1998, in an initiative to prevent the generating firms from exercising
market power.
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ment learning algorithm which is driven by the goal to simultaneously max-
imize profits and reach a target utilization rate of the own power plant
portfolio. The agents adjust their bidding strategies according to their last
round’s success; they either lower, raise, or repeat their last bid price, de-
pending on whether their utilization and profit targets have been met in the
last round, or not. The demand side of the market is modeled as a static
aggregate load curve with limited price sensitivity. Transmission constraints
or costs are neglected.

The results from different scenarios show that simulated market clearing
prices are lowest in the case of daily bidding with uniform pricing, and high-
est in the case of hourly bidding with discriminatory pay-as-bid settlement.
The authors explain this result by two phenomena: (i) in the pay-as-bid
case, base load generators are forced to bid closer to the market clearing
price in order to maximize profits (in contrast, they bid at prices close to
zero in the uniform pricing case); this reduces competitive pressure on the
mid-merit plants; (i) hourly bidding allows generators to effectively seg-
ment demand into peak load and base load hours and, thus, to extract a
greater portion of the consumer surplus than under daily bidding.

Another finding that the authors report from the simulation results is
that for all simulated scenarios, bid prices fall as the target rate of utilization
— which is a simple representation of the agents’ hedging activity in the
forward market — rises. At a target utilization rate of 100 %, which can be
assumed for a plant for which the output has already been contracted on the
forward market, prices fall to marginal cost. This observation is consistent
with theoretical considerations, i.e. that the optimal bidding strategy for a
hedged power plant is to bid at short-run avoidable costs.

As generator agents in the model also learn across their portfolios and
can transfer successful bidding strategies from one plant to all others, small
agents with few power plants have an informational disadvantage over large
firms who can submit more bids and, consequently, gather more market
price information. In their simulation results, the authors find that agents
with few plants perform better in a uniform price setting than they do in
the pay-as-bid case. This can be explained by the fact that, in the uniform
case, all agents receive the information of the system marginal price, i.e. the
result of the industry’s collective learning; thus the informational advantage
that large generators have in the case of discriminatory pricing is mitigated.

In Bower and Bunn (2001) the computational analysis described above
is complemented by a validation of the simulation model against classical
models of monopoly, duopoly, and perfect competition. The mean simulated
market clearing prices for pay-as-bid and uniform pricing are very close to
the corresponding theoretical results in the monopoly and perfect compe-
tition models. In the case of duopoly, however, the difference between pay-
as-bid average prices and uniform system marginal prices is much smaller
in the simulation model than in the theoretical benchmark (£279.39 ver-
sus £262.10 in the simulation, £ 340.00 versus £ 257.50 in the theoretical
model). The similar results for simulated and theoretical prices in the two
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extreme cases of monopoly and perfect competition gives confidence in the
simulation model implementation. Nonetheless, it is not clear which con-
clusions the authors draw from the comparison of simulation and theory in
duopoly and what their results imply for an oligopoly model (the reader
would also have been interested in an evaluation of a simulated oligopoly
case and whether prices in this case are closer to the competitive equilib-
rium or to the duopoly case).

Bower et al. (2001) apply the same basic model to the case of the German
electricity sector. It is simulated as a day-ahead market in which plants are
dispatched centrally and remunerated on a pay-as-bid basis. The target uti-
lization rate is 60 % for the major players and 100 % for 14 small generator
agents. The authors analyze the impact of four mergers of large German
utilities that were probable at the time of the study (and have actually
taken place shortly after). They find that electricity prices rise considerably
as an effect of the mergers. Simulated prices are 16 % higher in on-peak
and 5% in off-peak times when the two larger mergers take place. When
all four mergers are realized, prices rise by 54 % on-peak and 45 % off-peak.
When the merged firms also seek to rationalize their portfolios and shut
down about 6 % of the total system capacity, the effect on prices is even
more severe: a 100 % price rise in off-peak times and a 300 % rise during
winter peaks.

Bunn and Oliveira (2001) present a more detailed model of the New Elec-
tricity Trading Arrangements of England and Wales (NETA). In contrast
to the approach described above, the authors explicitly model an active
demand side and the interactions between two different markets, i.e. the
bilateral market and the balancing mechanism. Trading in both markets
is modeled as a call market with pay-as-bid settlement. Both generators
and suppliers seek to maximize individual daily profits and simultaneously
minimize the difference between their exposure to the balancing mechanism
(BM) and their (fixed) objective for BM exposure. They learn to set mark-
ups on their bid prices in both markets through reinforcement learning; the
mark-up for the bilateral market is set relative to the price bid in the bilat-
eral market price in the previous day, and the mark-up for the BM is set
in relation to the bilateral market bid price of the same day. Consequently,
all generator (supplier) agents learn three different policies for setting three
different prices: the offer (bid) price for the bilateral market, and the bid
prices of, respectively, increments and decrements for the balancing mech-
anism. In order to avoid inconsistent behavior during the learning process,
the authors impose some “lower bounds of rationality” on the agents’ bid-
ding strategies through the introduction of operational rules. Suppliers, for
example, make sure that a more flexible power plant never undercuts the
offer of a less flexible plant of their same portfolio.

The learning algorithm applied in the model is tailored for this spe-
cific trading arrangement. The range of actions that an agent can choose
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from, i.e. the possible mark-ups, differ for suppliers and generators (as an
example suppliers can set mark-ups between 0.95 and 1.2 in the bilateral
market, whereas generators choose from a range between -0.15 and 1.15 in
the same market); the intervals are each partitioned into ten discrete mark-
up values. At each trading day, agents calculate the expected daily profit
and the expected acceptance rate of each possible mark-up using exponen-
tial smoothing of the previous days’ trading results. The ezpected reward
for each mark-up is the product of the expected profit and acceptance rate.
These expected rewards are ranked in descending order; the perceived utility
of each mark-up j is calculated on the basis of its rank(j) as follows:

Search Propensity — n

Rank(j)—1
Util; = U -
i ( Search Propensity )

The search propensity parameter expresses whether an agent has a rather
conservative utility function (low value) or whether it is more adventurous
in trying different mark-ups (high value); it is set to four for all agents in all
simulations. U is equal to 1000 and n has a value of three. The probability
of choosing mark-up j is defined on the basis of its perceived utility in the
following way:

Unfortunately, the authors do not describe how the agents make sure
not to violate the operational rules that have been defined, and to what
extent the agents’ behavior results from the learned policy or from these
operational rules. Moreover, one shortcoming of the reinforcement learning
algorithm applied by the authors seems to be that the absolute values of
Util; are the same in every round, but distributed on different mark-ups, as
only the ranks are taken into account for its calculation. As a consequence,
an agent has no information on how much better one mark-up is than the
next best one. Also, as the rank of a mark-up enters exponentially into the
determination of Util;, the best mark-up has a very high probability of being
chosen again (75 % in the simulations presented in the paper), whereas for
the last four mark-ups, this probability is close to zero.

The simulation model is run with power plant data that represents the
UK wholesale electricity market. The authors observe very high prices in
those two hours of the day in which demand is highest.?> Another observation
is that a wide spread between the System Buy Price and the System Sell
Price emerges in the balancing mechanism and that the average bilateral
price is centrally located between them. This corresponds to the intuitive
system behavior.

3Note that electricity contracts are settled separately for every hour of the
day in the model, but agents only learn one mark-up for the whole day and, in
consequence, submit the same bids for all 24 hours of the day.
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An extension of the model and further analysis is presented by Bunn and
Oliveira (2003). Here, the research question to be analyzed is whether two
specific generation companies in the England and Wales electricity market
are capable of manipulating market prices in order to increase their prof-
its. The authors first analyze a simplified version of the bilateral market in
the form of a one-shot pay-as-bid Betrand game with capacity constraints.
Based on the calculated results, they argue that this model does not allow
to evaluate individual market power abuse and that it neglects the impact
of learning in repeated games, which might also be an important factor in
market power analysis. Given these arguments, they apply the simulation
model described above in order to find out whether the two generators can
influence market prices to their own advantage. They compare six different
withholding strategies, including the case of no withholding (benchmark),
cases in which only one of the two generators withholds capacity, and one
where both simultaneously withhold parts of their capacity. The reported re-
sults indicate that only one of the two generators, whose ability to influence
market prices was studied, is capable of increasing electricity prices unilat-
erally. If both companies act together, they can also significantly increase
power exchange prices. The second generator had no ability to manipulate
prices alone. Moreover, prices in the balancing mechanism are found to be
robust against manipulation from the two players.

One interesting remark that the authors state in their conclusion is that
in these types of AB models, i.e. where agents learn to adapt their behav-
ior to a stable environment, the potential for agents to collude on higher
than marginal costs can be overestimated. In real markets where varying
demand, fuel costs, and transmission constraints change the state of the
world continuously, this coordination behavior might be harder to achieve.

An agent-based analysis of technological diversification and specialization is
presented in Bunn and Oliveira (2006). The question that the authors want
to answer in this paper is whether strategic generator agents in the electric-
ity markets evolve into diversified players with a mix of base load, shoulder
and peak load plants, or into specialized players that seek to dominate the
market in their segment. They develop a model in which generators trade
generating capacity among themselves and then, in a second stage, trade
electricity from their plants, applying a Cournot strategy. Two mechanisms
are compared: single-clearing and multi-clearing. The first mechanism cor-
responds to a power pool where one uniform price is set for every hour of
the day; the latter is supposed to replicate trading in bilateral markets. In
the multi-clearing setting, base load, shoulder, and peak load are traded
separately in three different markets.

Generators aim at maximizing the value of their whole portfolios. The
plant trading game consists of three stages. In the Initialization stage, the
Cournot game is solved, which gives the initial valuations of each plant.
Then, in the Identification stage, the agents estimate which plants are most
likely to be traded, in order to simplify the coordination problem. In the
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Adaptation stage, players decide which plants they will actually attempt to
buy or sell; the resulting bids and offers are cleared in the Trading stage.
Finally, the algorithm recalculates the capacities owned by each player and
the respective cost structure in the Updating stage. The identification of
the most likely trades is based on past observations. The adaptation proce-
dure is based on stochastic search and learning. An inertia element of the
adaptation algorithm defines whether the agent searches for new strategies
or stays with the old ones; it decreases over the course of a simulation.
New strategies are defined as the Best-Response to the given situation; the
Best-Response action maximizes the sum of the utility (profit/reward) of
an action and the discounted portfolio value.

The simulation model is run with plant data from the England and
Wales electricity market. In the first set of simulations, base, shoulder and
peak load plants are separated among three different players. The single-
clearing mechanism leads to high concentrations in this setting: a single
player (the base load player) becomes a monopolist, while the others sell all
their capacity and are extincted after less than 2000 iterations. In the multi-
clearing case, several players coexist; the base load and shoulder players own
most of the capacity at equal share, whereas the peak load player retains
some capacity at the end of 2000 iterations. Prices are also higher in the
single-clearing than in the multi-clearing case. In a second scenario, all three
players have similar initial portfolios. In this case, the difference between
the two clearing mechanisms is rather small. The authors conclude from
this observation that if the industry is at a state of great diversification, it
will tend to remain so, independently of the market-clearing mechanism.

3.1.2 Comparing Different Adaptation Algorithms - Visudhiphan and Ilié
Another research initiative using AB models of wholesale electricity trading
has been started by two researchers at the Massachusetts Institute of Tech-
nology. A first model implementation has been described in Visudhiphan
and Ili¢ (1999). Here, three strategically interacting generator agents ap-
ply some form of Derivative Follower strategy (Greenwald et al. 1999) for
learning to set profit-maximizing bid prices. In their extremely simplified
model, the authors can show that in a market with price-inelastic load, gen-
erators extensively exercise market power, while a price-responsive demand
side leads generators to bid more competitively, resulting in lower market
prices.

In a later paper, Visudhiphan and Ili¢ (2001) report on simulation results
from a model in which agents can strategically withhold capacity when their
expected profit is higher than without withholding. Each agent records data
about the market outcome in previous market rounds. The outcomes are
each mapped to predefined discrete load ranges, so that each agent’s mem-
ory can be represented as a matrix with rows corresponding to the different
load ranges and columns corresponding to the market rounds. Agents also
distinguish whether the resulting market price in one round has been a re-
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sult of strategic or competitive behavior, and store this information likewise.
Bid quantities and prices are defined separately in a two-step decision pro-
cess. Each agent is assigned one out of six proposed strategies for setting
the bid prices of anticipated marginal units: it can be set equal to (i) the
maximum, (ii) the mean, or (iii) the minimum of historic prices, to (iv) the
sum of weighted historic prices, (v) the last bid price plus the difference
between the last market price and the last bid price, weighted by a con-
stant 8, or to (vi) a target price plus the absolute value of the difference
between the last market price and this target price, weighted by a constant
0; the value of 8 depends on the success in the previous round. Simulation
results are presented for two scenarios of available capacity. For each of the
capacity scenarios, strategic and competitive (i.e. marginal-cost) prices are
compared. The authors come to the conclusion that generators are able to
raise market prices if they bid strategically. This is observed not only for
hours of high electricity demand, but also for low-demand hours. However, a
distinction between the success of different price or quantity bidding strate-
gies is not provided.

A more in-depth discussion of agent bidding representations is provided in
Visudhiphan (2003). The thesis explores three different learning algorithms
or bid selection strategies: (i) a modification of an algorithm formulated
by Auer et al. (2002), (ii) a simple reinforcement learning algorithm us-
ing a Boltzmann distribution for defining the probabilities of choosing each
action, and (iii) a model-based algorithm similar to the one presented in
Visudhiphan and Ili¢ (2001). The Auer et al.’s algorithm assigns a proba-
bility p:(¢) to each of the K possible actions. This probability is a mixture
of a uniform distribution (v/K) and a function of the weight factor w (%)
associated to each action 7.:

. wy (i) Y
pe(i) = (1 — 7)72;11 o) e

The weight w, (i) is adjusted in every round, based on the rewards re-
ceived from the chosen actions:

weaaG) =t -eap (e (2000 + 2 ))

Here, #.(j) is set to x(j)/pt(j) if j = ¢, and 0 otherwise, where x4(j)
is the reward of the chosen action j in round ¢. Agents learn bid prices and
bid quantities separately through applying this algorithm.

Similarly, agents learn prices and quantities separately in simulations
applying a simple reinforcement learning algorithm where the probability
of choosing an action j is defined as:

R/

pt(]) = W
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The estimate value R;(j) of action j is updated in every round in the
following way:

Ri1(j) = { (1 - Q)R (j) + - I(j) if j = Zt
R.(5) otherwise

Various simulation runs with differing parameter combinations have
been tested with these three algorithms, and results are compared. What is
striking about the simulation results is that the daily load cycle seems to
have a much stronger influence on resulting market prices than the learning
representation. In all simulations, daily price cycles can clearly be distin-
guished, while for most of the learning algorithms prices do not exhibit any
longer-term trends. The author does not provide any discussion about which
learning algorithm is most appropriate for realistically modeling real-world
behavior. She also concludes that her results cannot be validated against
market results observed in any real-world market, because information on
marginal-cost functions, bilateral contract obligations, operating constraints
or other power system characteristics is not sufficiently available. Moreover,
the thesis reports on comparative results from uniform versus pay-as-bid
pricing; the conclusion of the result evaluation is that outcomes significantly
depend on the learning algorithms that the agents employ.

With no quality measure for assessing the learning algorithms and with-
out validation against empirical data, it becomes difficult to judge whether
the model is appropriate for realistic electricity market modeling. It would
have been desirable also to have a discussion of why the authors have ob-
viously abandoned some of the concepts presented in their earlier papers.
Among these is another publication by Visudhiphan and Ili¢ (2002), which
describes an interesting approach to simulate distinct time scales of elec-
tricity trading (short-term bidding strategies, medium-term maintenance
scheduling, and long-term new entry and shut-down or merger strategies).
It has obviously not been implemented. As these authors have started to
build an agent-based electricity market model very early, their experience —
also with unsuccessful approaches — might be helpful for other researchers
who are new in this field.

Two further publications by one coauthor describe results from another
simulation model for analyzing market dynamics that arise from individual
agent decision making. The strategic agents are two/three generators in a
transmission system with and without congestion, respectively (Ernst et al.
2004b); other runs also include a profit-maximizing transmission line owner
(Ernst et al. 2004a). Here, agents strategically set the bid price that will
maximize their payoff under the assumption that the other agents repeat
the same actions as in the precedent trading round. This approach seems
to be a renunciation from the earlier approaches presented. Unfortunately,
no discussion of the reasons for this turning away is provided.



14 A. Weidlich, D. Veit

3.2 Simulations Applying Genetic Algorithms

Genetic algorithms (GA) are a class of heuristic search methods which are
inspired by the biological process of evolution. In (electricity) market simu-
lations, strategies that market participants can choose to apply are encoded
into bitstrings which can be thought of as chromosomes. Most successful
(or “fittest”) strategies are passed from one generation to the next by a
mating process in which parent chromosomes produce offsprings. By mim-
icking crossover and mutation, GAs exploit the genetic dynamics underlying
natural evolution to succeed in their environment.

Some AB models apply genetic algorithms for agents to search for op-
timal bidding strategies in electricity markets. Curzon Price (1997) has
demonstrated the usefulness of GAs for simple standard games such as
Bertrand and Cournot competition, price choice of a monopolist and a chain
of monopolists, and also for very simplistic electricity market settings. In the
following, some GA simulation models designed specifically for electricity
market research are summarized.

3.2.1 FEarly GA Approaches — Richter, Petrov, Sheblé et al. Richter and
Sheblé (1998), Petrov and Sheblé (2000), Lane et al. (2000), and Nicolaisen
et al. (2000) present simple electricity market models that use genetic algo-
rithms for representing the agents’ bidding behavior. The simulated market
in the cited papers takes the form of a double auction where executable sup-
ply and demand bids are matched pairwise. Prices are determined as the
midpoint between two matched bids or as a competitive equilibrium price.
The learning task for the agents differs in the cited papers. In Richter
and Sheblé (1998) only generation companies are part of the GA population.
They have three distinct evolving parts, or genes: one for determining the
offer quantity, another for selecting the offer price and a third one for choos-
ing a price forecast method. The latter includes strategies like e.g. moving
average or linear regression. On the basis of the respective technique coded
in their genes, agents determine their forecast price, then choose a bid price
between their generating cost and the forecast equilibrium price, and deter-
mine an offer quantity between 0 and their maximum generation capacity.
Standard GA methods are used for the evolution of the population.

Petrov and Sheblé (2000) propose a model where only one agent applies
a genetic algorithm for evolving its trading strategy. All other agents dis-
play a very simple trading behavior: in a ten round auction, electricity
sellers (buyers) increase (decrease) their bid price by one increment if the
last offer was accepted; in the opposite case, they decrease (increase) their
bid price for the next round. The GA agent develops more sophisticated
trading strategies based on her last round’s bid price and the equilibrium
price. The strategy has the form of a decision tree whose functions comprise
algebraic and logical operators (e.g. summation, division, greater, “if-then-
else”). The authors find that the GA agent consistently surpass the fixed
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rule agents during all separate runs of the simulation.

In Nicolaisen et al. (2000) and Lane et al. (2000) both buyer and seller
strategies evolve with the help of a genetic algorithm. The GA is used to
determine the agents’ bid and ask prices. Possible bid (ask) prices are in
the range of marginal cost and marginal cost + 40 $ (marginal revenue - 40
$ and marginal revenue); the bitstring representing the agent’s gene codes
a floating point number in the interval [0, 1) which is then multiplied by a
dollar constant, resulting in the admissible bid (ask) price. The authors are
interested in measuring the individual market power of buyers and sellers.
When discussing their simulation results (most of which do not confirm their
formulated hypotheses and even contradict theoretical economic considera-
tions), the authors admit that their very simple GA implementation might
not realistically represent human behavior in real markets. They propose to
try other learning representations which allow agents to learn on the basis
of their individual experience in the trading process.

The learning representations chosen in the aforementioned models are in-
deed very simplistic and do not deliver satisfactory results. For this reason,
reinforcement learning is used for representing the agent behavior in AB
electricity market models in later studies by the authors (Petrov and Sheblé
2001, Nicolaisen et al. 2001, see Section 3.3.1).

3.2.2 Models of the Australian National FElectricity Market — Cau et al.
Cau and Anderson (2002) develop a wholesale electricity market model sim-
ilar to the Australian National Electricity Market. In Cau (2003), the model
is developed further. It covers two bidding structures, i.e. stepwise and piece-
wise linear bidding. In both cases, agents assign bid quantities to a number
M of given price segments. In the piecewise linear case, bidding schedules
are formed by linear interpolation between two bid points, whereas quanti-
ties are kept constant between two points in the stepwise case. The agents’
task is to find the strategies that maximize their individual payoffs. A strat-
egy is a set of bidding schedules for the possible environmental states. A
state is defined by the previous spot market price, the past market demand
and the forecast market demand. Demand is price-inelastic and can be clas-
sified as either high or low, while there is some uncertainty about the exact
level. With two possible demand levels, the total number of states is 2 x 2x
the number of possible prices or price bands. Starting from randomly cre-
ated bidding strategies, the agents evaluate their fitness (i.e. average payoff
when the strategy has been played) and select the best strategies for further
rounds. Standard evolutionary operations, such as crossover and mutation,
are also effected on the population.

Simulations are run for a duopoly with two equally sized generators, one
having lower marginal generation costs than the other. The authors observe
that tacitly collusive strategies can be learned by the agents in this co-
evolutionary environment, both in the stepwise and piecewise linear bidding
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structure. Cau (2003) further explores the effect of some market demand
and market structure measures on the agents’ ability to achieve tacit collu-
sion. The author finds that on the demand side, high overall demand, high
uncertainty and low price elasticity facilitates tacit collusion (measured as
the joint profit ratio). On the supply side, situations in which tacit collusion
is easier to achieve are characterized by symmetry in cost and capacity, and
small hedging contract quantity. Also, the influence of the number of com-
peting generator agents on the success of collusive strategies is examined.
As expected, the author finds that an increasing number of agents makes
it more difficult for them to collude in a sustainable way. However, even in
cases with many competing generators, tacit collusion can still occur.

3.8 Simulations Applying Erev-Roth Reinforcement Learning

Based on psychological findings on human learning, Erev and Roth (1998)
have developed a three parameter reinforcement learning algorithm. This
learning model has gained much attention by AB modelers. Also, a consid-
erable number of papers describing agent-based electricity models applying
this learning algorithm can be found and are summarized in the following.

The learning formulation integrates the aspects of experimentation and
forgetting:*

gni(t+1) = (1 = )gn;(t) + R(z)(1 —¢) if j =k
" (L= 0)an; (t) + R(z) 57— ifj#k
The choice of an action is probabilistic, and choice probabilities are derived
from the propensities p,,; for action j in the next round in the following way
(referred to as proportional action selection here):
Adnj (t + ].)
M
Zk:l dnk (t + 1)

Some researchers propose to determine the choice probabilities based on a
Boltzmann distribution with a Temperature parameter T':°

pnj(t + 1) =

eqr:,j (t—',—l)/T

ij:l etnk (t+1)/T

pnj(t+1) =

Following Sutton and Barto (1998), this formulation will be referred to as
Softmazx action selection in this paper.

“Here, ¢,; corresponds to the propensity of agent n to choose action j, R(x)
is the reinforcement from the last chosen action (k), M is the number of possible
actions; ¢ and e denote the recency (or forgetting) experimentation parameters.

5The Temperature parameter — also referred to as cooling parameter — deter-
mines the degree to which generator i focuses on actions with high propensity
values. Usually, the temperature is decreased over the course of a simulation in
order to allow more exploration at the beginning, while focusing on exploitation
later on.
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3.8.1 Developing the Erev and Roth Algorithm - Nicolaisen, Petrov, Sheblé
et al. Petrov and Sheblé (2001) and Nicolaisen et al. (2001) present simple
electricity market models applying Erev-Roth reinforcement learning. Both
papers describe one problematic feature of the original algorithm formula-
tion, i.e. that no propensity update occurs when profits are zero (or close
to zero). Another flaw of the original algorithm formulation is accentuated
by Koesrindartoto (2002): for some parameter combinations of € and M, no
learning occurs. These considerations lead to the formulation of the Modified
Roth-FErev algorithm (MRE) (Nicolaisen et al. 2001):

(1 =@)gni(t) +R()(L—e)ifj=k
il +1) = { (1= 9)anj(t) + anj(t) 1= ifj#F

The MRE is used to simulate a double auction electricity market with dis-
criminatory pricing. The aim of the study is to analyze market power and
efficiency as a function of relative concentration and capacity of the market.

The simulation results do not support the hypotheses that the market
power of sellers increases when relative capacity increases or when relative
concentration decreases. However, the hypothesis that market efficiency (to-
tal auction profits in relation to total profits in competitive equilibrium) is
high receives support by the simulation results. The authors compare their
results to the market efficiency observed in simulations using genetic al-
gorithms (Nicolaisen et al. 2000, see also Section 3.2.1) and come to the
conclusion that individual MRE learning leads to higher market efficiency
than GA social mimicry learning, because each agent learns to make his
own bidding strategies on the basis of his own profits instead of mimicking
strategies of structurally distinct traders.

3.3.2 Wholesale Market Reliability Testing with AMES — Tesfatsion et al.

Based on the work at Iowa State University, Koesrindartoto and Tesfat-
sion (2004), Koesrindartoto et al. (2005), and Sun and Tesfatsion (2007)
describe an electricity market model that encompasses the core features
of the Wholesale Power Market Platform, a market design that has been
proposed by the U.S. Federal Energy Regulatory Commission (FERC). The
current implementation of their AMES model (Agent-based Modeling of
Electricity Systems), as described in Sun and Tesfatsion (2007), comprises
a two-settlement system consisting of a day-ahead market and a real-time
market which are both cleared by means of locational marginal pricing.
The market clearing is managed by an independent system operator (ISO)
agent who operates an AC transmission grid.® The authors report on initial
simulation results that are run with a 5-node transmission grid test case
and with only one day-ahead market (the real-time market is inactive). The

5The representation of the transmission grid in this model is approximated by
a bid-based DC optimal power flow (OPF) problem which is described in more
detail in Sun and Tesfatsion (2006).
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demand side is simplified to a fixed and price insensitive daily load profile
submitted to the ISO.

The generator agents learn to optimize a supply function. While report-
ing their true production limits (minimum and maximum capacity) to the
ISO, they strategically set the prices (reported marginal costs) at these ca-
pacity levels;” thus they have the ability to submit supply functions that
are above their true marginal generating costs. The reinforcement learning
algorithm applied in the described simulations is the MRE algorithm with
Softmax action selection.

The simulation results show that all five generator agents learn to suc-
cessfully submit bids above their true marginal cost. This leads to total
variable costs of operation that are about three times higher then they are
in the case in which generators report their true marginal costs. The au-
thors conclude that the Wholesale Power Market Platform design features
do not prevent the considerable exercise of market power by generators.
Further extensions of the AMES model are envisaged. To encourage these
extensions, the developers of the AMES test bed have released it as free
open-source (Java) software.®

3.8.8 Vertical Integration in the Energy Sector — Rupérez Micola et al.
Rupérez Micola et al. (2006) present a model that consists of three se-
quential oligopolistic energy markets representing a wholesale gas market,
a wholesale electricity market and a retail electricity market. They analyze
the effect of reward interdependence in vertically integrated energy firms.
Trading in all three markets is modeled as a uniform-price auction with fixed
inelastic demand to which seller agents submit their bids. Firms in each of
the three tiers are identical and have constant marginal costs, normalized to
0. Agents always bid their full capacity and only choose bid prices; possible
actions (prices) range from 0 to an upper price ¢ in the retail market, which
is cleared first. The possible bid price range in the wholesale electricity mar-
ket is set from 0 to the resulting retail market price; in the gas market, which
is cleared last, it goes from 0 to the resulting wholesale electricity market.
Vertically integrated firms are modeled as two agents that each trade
in one market, and whose rewards are interdependent. The two agents can
be thought of as two strategic business units within the same firm. In the
case of vertical integration, the reinforcement that an agents perceives from
trading results in one market is only partly based on the profit earned in
this market; the other part consist of a fraction of the profits earned in
the other market. The size of this fraction is expressed through the reward
interdependence parameter o = {0,0.01,0.02,...,0.5}. Agents learn to set
their bids with the help of a slightly modified Erev-Roth learning algorithm:

"The resulting supply function is determined through linear interpolation be-
tween the prices at the minimum and maximum capacity.
8 Available at http://www.econ.iastate.edu/tesfatsi/ AMESMarketHome.htm
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_ (1— @), (t)+ Ri(x)  ifj=k
gl (t+1) = (1= ¢)g.;(t) + (1 =) Ri(z) if j =k +1
(1 —@)an;(t) ifj#kandj#k+1

The index i,¢ € {r,e, g} indicates that propensities are build separately
for each of the three markets. The parameter §,0 < § < 1 determines the
degree of local experimentation (through reinforcement of similar strategies).
Proportional action selection is applied. The authors also introduce the
aspect of “extinction in finite time”, which means that actions are removed
from the action domain when their probability of being chosen falls below
a fixed value p.

Simulation runs are conducted with two gas shippers, three wholesale
electricity traders, and four retail electricity traders. The reward interde-
pendence parameter is varied from o = 0 (no reward interdependence) to
a = 0.5 (strong reward interdependence) in 51 discrete steps. Results show
that the presence of vertically integrated firms generally raises prices in at
least two of the three markets considered. In the case of reward interde-
pendence between a gas shipper and a wholesale generator, prices in the
gas market (wholesale electricity market) rise from 59 (83) to 63 (93) units
when « is increased from 0 to 0.5. The authors show that the vertically
integrated firm can increase its overall profits. What the authors do not
mention is that the other, not integrated firms in the gas and wholesale
electricity market taken together can also increase their profits, to an ex-
tent even slightly higher than the integrated firm. So, all firms profit from
the higher prices in the scenarios with high reward interdependence.

The question then is why the firms can achieve higher prices in the
case in which one firm is vertically integrated. Here, the authors presume
that agents coordinate overall profits in both markets and conclude that
“vertically integrated firms give up profits downstream [in the wholesale
electricity market| in order to increase the scope for upstream profits [in
the gas market]”. However, as the agents learning algorithm in this model
is not designed in a way so as to allow agents to develop strategies across
several markets, it is not convincing that agents really coordinate overall
profits. A closer look on the results reveals that profits are generally higher in
the gas market than in the electricity market. As a consequence, vertically
integrated gas shipper agents, whose reinforcements only contain a part
of the profits earned in the gas market (the other part coming from the
electricity market), are inevitably less satisfied with their trading results
than their (otherwise identical) rivals. Thus, they search for other ways of
attaining higher profits, which can lead to higher prices in the gas market.
Inversely, the vertically integrated agent “feels” better off than his rivals in
the electricity market. However, when prices in the gas market rise, margins
in the wholesale electricity market shrink, so agents may seek to compensate
this loss through higher bid prices. It seems more appropriate to explain
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observed market prices on a level that can be deduced directly from the
agents’ learning tasks than interpreting them as higher level strategies.”

3.8.4 Further Approaches Applying Erev-Roth Reinforcement Learning Bin
et al. (2004) report on simulation results comparing three different pricing
methods in electricity auctions. Agents in their model submit bids for their
whole installed capacity; they learn to bid mark-ups on top of their marginal
costs. The learning algorithm applied is similar to the Erev-Roth reinforce-
ment learning algorithm with proportional action selection. The authors
compare uniform pricing, pay-as-bid pricing and a mechanism called Elec-
tricity Value Equivalent (EVE) pricing. Simulations are carried out for two
cases, i.e. one in which each generator agent owns only one power plant and
the second where the same capacity belongs to less generators, each owning
more than one power plant.'® Both the model and the result presentation
are rather brief and in parts confusing; the conclusion of the simulation re-
sults is that EVE pricing leaves less room for generators to exercise market
power than the other two considered pricing methods.

Cincotti et al. (2005) model a day-ahead electricity market which takes
the form of a clearing-house double auction with uniform pricing. While the
authors have used the original formulation of the Erev-Roth reinforcement
learning algorithm in earlier work (Cincotti and Guerci 2005), they now
propose a new algorithm, which they say is inspired by Erev’s and Roth’s
original work. The learning formulation they propose not only evaluates
the profits gained from chosen actions, but also evaluates potential profits
that would have been realized had other actions been chosen.!! Propensities
fs(t) for those strategies s that would have yielded a higher than the actual
profit at time ¢ are updated according to the simple rule

fi(t + 1) = (1 - 7") : fs(t) + Gs(t)

where r is a recency parameter and G,(t) is the potential profit. Propensities
of strategies whose potential profits are lower than the realized profit are
set to 0 and will, thus, not be considered in further rounds. Agents in this
model learn to bid price quantity pairs that maximize their profits; bid prices
can range from the generator’s marginal cost to the maximum admissible
price, and bid quantities range from 0 to the generator’s maximum installed

9Following the same argument, it is not surprising that the authors do not
find evidence for “raising rivals’ cost” behavior. Agents do not perceive the other
agents’ costs and have no reasoning capability that allows them to devise such
strategies.

107t is not specified in the paper how agents strategically bid a portfolio of
power plants in the second case.

HPpotential profits are calculated under the (questionable) assumption that an
agent would have sold the total bid volume if his bid price had been less than or
equal to last round’s market clearing price.
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capacity, both in steps of 1 EUR, or 1 MW respectively.'? The authors con-
duct experiments for different cases of supply side competition; the number
of generator agents is varied from 10 to 100, and the supply/demand ratio
from 1.25 to 2. All generators have the same installed capacity and marginal
costs. Among the findings is that prices quickly converge to the competitive
equilibrium value (i.e. marginal cost) in most cases. The authors find that
the equilibrium outcome is reached faster when the number of competing
generators is small. This finding is rather unintuitive; it may be an indicator
for the model not being a realistic representation of the market under study.

In Cincotti et al. (2006) a similar model is run with a learning algorithm
as formulated by Marimon and McGrattan (1995). This algorithm assigns
a strength S; ; to every action that an agent ¢ can take, which is updated
in every round as follows:

MNit—1

Siilas) = Sit-1(a;) — ﬁ “[Sit—1(a;) — II; 1—1(a;)] if @ plays a;
pe Sit—1(a;) otherwise

n;.¢(a;) is the number of times that strategy a; has been played. The algo-
rithm comprises some element of inertia, which means that agents can keep
their mixed strategies constant over some time:

) A exp(Si,t—1(ai)) i ili ;
gii(a;) = { oie—1(ai) Y oit—1(a:) exp(Sie—1(a:)) with probability pi.;

oii—1(a;) with probability 1 — p; ,

The probability to choose a certain action in the next round is finally
given by the following formula, which ensures that every action has at least
a minimum probability €; , € (0,1) to be chosen:

o~ i if 0;¢(ai) <eiy
oi¢(ai) = %(1 —eit - {i4(a;) < eit}| otherwise

12A few critical notes are in order about this learning representation: The pro-
posed formulation has some similarities with the concept of experience-weighted
attraction (EWA) (Camerer and Ho 1999), in that it also partly bases its strategy
evaluation on hypothetical payoffs. This raises the question why the authors have
not considered to employ the EWA algorithm, which is better established and
has been evaluated for different kinds of learning tasks, e.g. Arifovic and Ledyard
(2004). Moreover, the early distinction of strategies once they do not perform bet-
ter than the currently played strategy leads to a rapid and unjustified constriction
of the action space and may hinder agents from finding the best strategies. As
the bid price is set to 36 EUR for both agents in the first round, prices never
rise above this level, as all higher bid price actions are eliminated after the first
round. Finally, it should be noted that the proposed learning algorithm formula-
tion does not have much left in common with the reinforcement learning algorithm
formulated by Erev and Roth.
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The authors conduct experiments for a duopoly case in which both gen-
erators have the same installed capacity but different (constant) marginal
costs. The domain of possible action contains only bid prices in one case
(agents offer their maximum capacity), and both bid quantities and prices in
a second case; for both options, the two levels of low demand (one generator
can satisfy demand alone) and high demand (both generators are called into
operation) are distinguished. Uniform price and pay-as-bid mechanisms are
compared on the basis of several simulation runs. The authors find that if
agents compete only on the basis of prices, market efficiency, i.e. long-run
profits gained by the two sellers, does not depend on the auction mechanism.
However in the price-quantity bidding case, results for uniform and pay-as-
bid pricing differ: for low demand, the uniform price auction offers higher
profits for both generators. In the pay-as-bid auction, more competitive
strategies are played more often, and profits are especially lower for the less
efficient generator. In the high demand case, the uniform price auction also
yields higher profits for the more efficient generator, but for the less efficient
generator, profits are almost equal in pay-as-bid and uniform price auctions.

Weidlich and Veit (2006) simulate two markets that are cleared sequen-
tially — a day-ahead electricity market and a market for balancing power.
Agents place bids in both markets and evaluate their individual success in
one market by integrating the opportunity cost of profits that could have
been obtained in the other market. They learn from trading results using
a modified Erev and Roth reinforcement learning algorithm with propor-
tional action selection. The day-ahead market is modeled as a call market
with a fixed and price-insensitive demand side. The balancing power mar-
ket replicates the rules in place in Germany. Both pay-as-bid and uniform
price settlement have been simulated. The authors show that the order of
market execution plays a significant role in resulting market prices: if the
day-ahead market is cleared first, agents still have more available capacity
to offer in the auction. Hence, competition is increased and prices are lower
as compared to the case in which some generators have already sold (parts
of) their capacity in the balancing power market. As potential profits that
could have been earned on the day-ahead market play a more important
role for setting bid prices in the balancing power market than vice versa,
low prices in the day-ahead market also lead to lower prices in the balanc-
ing power market. When the balancing power market is cleared first, prices
are higher in both markets. The authors also observe that agents tend to
bid lower prices in the case of uniform pricing; however, resulting (average)
prices are lower in the pay-as-bid case.

Veit, Weidlich, Yao, and Oren (2006) study the dynamics in two-settlement
electricity markets. In these markets, energy producers sign strategic con-
tracts in the forward market, and engage in oligopolistic competition in the
spot market. While transmission constraints are ignored in the forward mar-
ket (however, electricity is traded in different forward trading zones of the
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network), the spot market considers an underlying transmission network in
form of a lossless DC power flow optimization problem. In the spot market,
electricity is paid at nodal prices; forward contracts are settled at spot zonal
settlement prices.

Agents in this model learn to set profit maximizing bids on the spot
and forward market separately. They apply a modified Erev and Roth rein-
forcement learning algorithm with proportional action selection. Propensity
update for spot bids is effected on the basis of achieved spot market profits.
Bids are evaluated for each power plant and for each possible spot market
state individually. The propensities for possible bids on the forward mar-
ket are updated on the basis of the generators’ total profit; these bids are
evaluated globally, i.e. learning is not differentiated for single plants. The
agents’ learning task is to set profit maximizing bid quantities on both mar-
kets (Cournot game). The load is modeled as a linear demand function, so
some price-responsiveness is assumed. Simulation results from this model
demonstrate that the introduction of a forward market influences the sup-
ply agents’ bidding strategies in the spot market. Forward trading leads to
a more competitive behavior of the suppliers in the spot market, and thus
to lower spot electricity prices.

3.4 Simulations Applying Q-Learning

Krause et al. (2005) compare Nash equilibrium analysis and AB modeling
with Q-learning for the case of a power pool with transmission constraints
(the network representation is depicted in Figure 1).
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Fig. 1 Transmission system in the model described by Krause et al. (2005)

The model contains three agents who strategically set mark-ups to their
electricity selling bids; the set of possible mark-ups is {0, 10, 20, 30} $/MW
for the two agents whose cost function intercept is 10 $/MW and {0,10,20}
$/MW for the third agent, whose cost intercept is 20 $/MW. The agents
apply an update rule similar to the one used in Q-learning for learning the
value of each possible action:
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Qat) + Q(at) + arip1 — Q(ay))

However, unlike in the original Q-learning formulation by Watkins (1989),
there is no differentiation between the states that agents are in at each it-
eration. So, one important element of Q-learning, e.g. taking into account
future rewards of possible actions, is not included in this formulation. De-
spite this modification, the authors achieve satisfactory simulation results.
They apply an e-greedy strategy for action selection'® and compute Nash
equilibria for simplified model settings. In those cases in which there exists
one Nash equilibrium, the agents’ actions quickly converge to this equilib-
rium, whereas in the case of two Nash equilibria, cyclic behavior is observed.

In a later study, Krause and Andersson (2006) apply the same model for
analyzing the social welfare implications of the following three different con-
gestion management methods:™

— Locational Marginal Pricing (LMP)
— Market Splitting
— Flow-based Market Coupling (FBMC)

The case in which all generators bid their true cost functions (referred
to as perfect competition) is compared to a case in which all three genera-
tors apply the above described Q-learning-like algorithm (the oligopolistic
competition case). Simulation results reveal that LMP results in the highest
overall welfare in both the competitive and the oligopolistic case. Market
splitting performs second best in both cases and FBMC shows lowest over-
all welfare. However, in the case with learning agents, generators’ surplus is
higher while consumer surplus is lower than in the competitive case. This
is due to the exercise of market power by the generators.

Similar results for a different model specification are reported by Naghibi-
Sistani et al. (2006). In their model, two different states are defined: (i)
low production cost and (ii) high production cost. Agents strategically set
the slope of their linear bid supply function; the possible bidding strategies
are classified as high, middle and low (price/slope). In their simulations,
only two bidders compete to satisfy demand in a power pool without trans-
mission constraints. The authors use a Softmax action selection rule. The
temperature parameter T is adjusted during the simulation in the following
manner:

T =20(1 — p(ai|s)) |AQ(s, a;)]

3For a description of the e-greedy strategy, the reader is referred to Sutton
and Barto (1998)

The congestion management methods are not described here. For references
to these concepts, the interested reader is referred to the cited paper.
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where p(a;|s) is generator i’s probability of choosing action a in state
s, and |AQ(s,a;)| is the absolute change in Q-value from one iteration to
the next. According to this definition, 7" is high when the Q-values have
not converged to a final value, and low when changes in Q become small.
The motivation behind this formulation is to reduce convergence time and
sensitivity to learning parameters. However, as the choice of this particular
formulation is not argued in detail, and is not compared to other possible
formulations, it seems rather arbitrary.'® Reported results from an illus-
trative simulation runs show that agents quickly learn to play the strategy
corresponding to a Nash equilibrium; the probability of this strategy con-
verges to 1 after ~100 iterations.

Xiong et al. (2004) compare market prices and price volatility in uniform
price and pay-as-bid electricity auctions with the help of a model with
Q-learning generator agents. The environmental states are defined as last
round’s market prices; the set of possible states is {0,1,2,...,20}. Agents learn
to set bid prices that maximize their payoffs; possible actions are also in the
range of {0,1,2,...,20} and bid volumes are always equal to the net capacity
of a generator. The reinforcement for each hour h of the day comprises the
profit r of that hour, and also the ratio of actual and target utilization rate
(p is a parameter defining how strictly an agent tries to satisfy the target
utilization rate):

actual utilization(h)\”
target utilization(h)

ra(s,a) = r(h) (

Action selection is effected with the e-greedy strategy. Simulation runs
are conducted with ten generator agents and with both price-inelastic de-
mand and a responsive demand-side; both demand scenarios are run with
uniform price and pay-as-bid clearing. The authors compare market prices!'®
and bid prices of one agent for the four simulated scenarios. The conclu-
sion from their simulation results is that agents bid at higher prices in the
pay-as-bid case, but overall prices are higher under uniform pricing. The
introduction of interruptible loads causes prices to drop for both clearing
mechanisms; however, the price decrease is stronger with uniform pricing.

5The authors’ proposition is even counterproductive: while aiming at reducing
the influence of one parameter of the learning algorithm, they introduce a new
one which is simply set to 20. This parameter does not have an interpretation re-
lated to psychological findings about learning, nor does it have a sensible machine
learning interpretation. Instead, it abandons the distinction between action-value
estimates on the one hand and choice probabilities on the other hand. In original
Q-learning with Softmax action selection, the temperature parameter defines the
preference of exploration over exploitation of successful strategies. With T" values
set individually for each action in each state, this principle is abandoned.

161t is not specified how the “market price” is calculated in the pay-as-bid case,
in which each generator faces different prices. It can be assumed that the authors
take the weighted average over all successful bids as the market price.
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Bakirtzis and Tellidou (2006) also compare uniform and pay-as-bid pricing
with agents applying Q-learning. As in the previous paper, environmen-
tal states are defined by the last round’s market price (uniform price or
quantity weighted average price of winning bids, respectively). Agents also
bid their full capacity at the price learned through the Q-learning algo-
rithm; possible bid prices are bounded by the price cap and the generator’s
marginal generating cost. The action selection rule applied in this paper is
adapted from the Simulated Annealing Q-learning algorithm developed by
Guo et al. (2004). All simulated scenarios comprise 5-7 generators; load is
constant and price-inelastic. Four cases are examined: (i) uniform pricing
with one dominant generator whose installed capacity is enough to satisfy
total demand alone and whose marginal generating costs are lowest; (ii)
same as (i) but pay-as-bid pricing; (iii) uniform pricing with the dominant
agent from the first two cases partitioned into three equally sized generators,
whose marginal costs are lowest; (iv) same as (iii) but pay-as-bid pricing.
Results show that the dominant firm in (i) and (ii) learns to set the bid price
that fully maximizes its profits. The two next cheapest suppliers learn to
stay below the bid price of the dominant firm, in order to be dispatched. In
the pay-as-bid case, the bid prices of these two generators are closer to the
dominant generator’s bid than under uniform pricing, but resulting market
prices are slightly higher in the latter case. In the more competitive cases
(iii) and (iv), the three generators with the lowest marginal generating costs
compete to serve demand, and prices mostly stay below the marginal cost of
the next cheapest generator. Here, however, average prices under pay-as-bid
are higher than market clearing prices under uniform pricing.

3.5 Simulations Applying Learning Classifier Systems

Learning Classifier Systems (LCS) combine reinforcement learning (for in-
creasing the probability of choosing successful actions) and genetic algo-
rithms (for producing new rules from successful ones). A classifier is a rule
of the form “if <condition> then <action>", where the condition describes
the state of the environment. An LCS is thus suitable for agents to solve
cognitive tasks.

Bagnall and Smith (2005) present a simplified AB simulation model of
the pre-NETA UK electricity market that applies LCS for developing suc-
cessful bidding strategies. The model and simulation results have also been
described in several other papers, e.g. Bagnall and Smith (1999), Bagnall
and Smith (2000), Bagnall (2000a), Bagnall (2000b), and Bagnall (2004).
The agent population in the presented model consists of 21 generator agents,
each owning one generating unit. The units are classified as one of the
four types: nuclear, coal, gas, or oil/gas turbine. Every generation type has
different characteristics of fixed cost, start-up cost, and generation cost.
The market environment is characterized by the forecast demand for each
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half-hour time slot (representing typical days of summer/winter and week-
day/weekend demand), by capacity premia for each half-hour time slot of
the following day, and by transmission constraints. Agents are grouped into
three different constraint groups: unconstrained, constrained on, or con-
strained off. During one daily trading cycle, the system marginal price and
pool purchase price!” are calculated from all bids submitted by the gener-
ators (forming the unconstrained schedule). The constraint levels and the
unconstrained schedule then produce the constrained schedule. Prices and
payments are communicated to the agents at the end of each round.

The agents follow two related objectives, quantified by two different re-
ward functions: avoid losses and maximize profits. They apply two learning
classifier systems (LCS) in order to learn rules for achieving these objec-
tives. The learning task is to set the bid price, all other bid parameters
being constant for each generation type. Each LCS has three components:

— the performance component produces a prediction array consisting of
estimates of the expected reward for following specific actions, for any
given input and rule set;

— the reinforcement component alters the parameters of the current rule
set based on the environmental feedback;

— the rule discovery component generates new, potentially superior, rules
from old ones using a genetic algorithm.

The three main research questions that the authors seek to analyze are
whether the agents learn to behave in ways observable in the real world,
how changes to the market mechanism alter agent behavior, and whether
the agents can learn to cooperate. As regards the first question of interest,
the authors conclude that the agents’ behavior is broadly consistent with
real-world strategies. This conclusion is grounded on the observation that
nuclear units generally bid at low prices, regardless of the demand level,
whereas oil/gas turbine units bid high in order to capture peak generation;
coal and gas units bid close to the level required for profitability and increase
their bids in times of high demand. An additional series of experiments has
been run in order to answer the second question: the payment calculation
has been changed from uniform pricing to a pay-as-bid scheme. The results
show that agents tend to bid higher under pay-as-bid, but the overall cost
of meeting demand is still higher under uniform pricing. The third research
question was concerned with the evolution of cooperation. Cooperation has
been defined here as situations in which two or more players make the same
high bid. Although the agents are able to produce high market prices in some
environments, the authors do not find many rounds in which the cooperation
criterion is met. They conclude that the number of available actions, the
exploitation/experimentation policy of the LCS and the potential incorrect
generalization over environments makes it difficult for agents to maintain
cooperative strategies.

"The pool purchase price is the sum of the system marginal price and the
capacity premium.
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Bagnall and Smith (2005) compare their approach to the models of Bunn
and Oliveira (2001) and Bower and Bunn (2001). They emphasize that the
complexity of the agent architecture and the information used for learning
is the main difference of their model in comparison to related approaches.
Unfortunately, they do not provide any arguments why this high complexity
of agent behavior is actually needed and in what way their results might be
more valuable than those generated from other simulation models. Neither
do they examine any research questions that cannot be answered with the
other referred approaches. As long as a simple model of agent behavior
can realistically represent the real-world features of interest, there is no
apparent reason to apply more complicated approaches. The authors of
the presented papers have not yet convincingly made clear what failures
of simpler learning representations they avoid with the very complex LCS
applied in their model.

3.6 Simulations with Supply Function Optimizing Agents

While analytical evaluation of supply function equilibria in power markets
either assumes continuous supply functions or restricts the analysis of var-
ious industry ownership structures to symmetric equally sized firms (or
both), Day and Bunn (2001) present a method for determining imperfectly
competitive outcomes in electricity markets based on computational mod-
eling. Their proposed model contains generation companies who bid indi-
vidual piece-wise linear supply functions into a market with uniform price
clearing. The agents seek to optimize the value of an objective function, i.e.
their daily profits from both spot sales and long-term financial contracts.
The optimization routine that the agents apply works under the conjecture
that the other agents submit the same bid as in the previous trading round.
Agents in this model have a limited optimizing behavior in that they only
change the bid price of one power plant per iteration (they choose the plant
which increases the value of the objective function most when bid at another
price). Electricity demand is represented by an aggregate demand function
with a defined demand elasticity; simulations are run with different demand
elasticities in order to determine the influence of demand response on the
generators’ ability to exercise market power.

The authors evaluate their computational model by comparing it with
the equilibrium in continuous supply functions that can be obtained through
the approach formulated by Klemperer and Meyer (1989). They find that
results from the two approaches are reassuringly close for a simplified mar-
ket scenario which models competition between three symmetric generat-
ing companies who have linear marginal costs. Based on this finding, the
authors are confident that the computational approach can also deliver re-
alistic results for more complex scenarios that cannot be represented by
an analytical supply function equilibrium model. Following this argument,
they then use the computational model for analyzing different options for
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the second round of plant divestiture in the England and Wales electricity
market in 1999. Results from various runs with different demand elasticities
and different volumes of financial forward contracts show that the analyzed
divestiture options result in lower average percentage bids above marginal
cost. For a 25 % and 50 % plant divestiture, the average bid above marginal
cost in different periods (summer, spring/autumn, and winter) significantly
decreased as compared to the initial conditions without divestiture. One
result that the authors point out is that the main reduction in mark-up is
caused by the creation of five generators (from initially three); the differ-
ence in divestiture percentage has only a small effect on observed mark-ups.
However, the authors also find that the proposed divestiture still leaves con-
siderable market power with generators in the short term, and could result
in prices more than 20 % above short-run marginal costs.

In a later paper, Bunn and Day (2002) present this model as a compet-
itive benchmark against which to assess generator conduct and to diagnose
the separate causes of market structure and market conduct in situations
in which prices appear to be above marginal costs. As the England and
Wales electricity market cannot be characterized by perfect competition,
but rather as a daily profit-maximizing oligopoly, the authors argue that
fully competitive (marginal cost) baselines are not appropriate for assessing
market power abuse. Instead, they argue that the result from their com-
putational model can serve as a realistic baseline for imperfect (oligopoly)
competition, where agents learn to compete, but not to collude. For the
tested scenarios, the simulated system supply functions are shown to lie
above the marginal cost function and significantly below the system supply
curve observed in the England and Wales pool on an exemplary day, except
at low demand levels. This leads the authors to the conclusion that the
extent to which the simulated supply functions are above the marginal cost
function is caused by the market structure. The extent to which observed
system supply functions in the real-world market are still above the simu-
lated system supply functions is then interpreted as the degree of collusion
within the market, and identifies a problem of market conduct.

3.7 Large-Scale National Agent-Based Electricity Simulations

To our knowledge, four national U.S. and one Australian laboratories are
currently developing large-scale agent-based electricity system models which
are intended to serve as tools for reliability and market design analysis for
power markets:

— EMCAS, the FElectricity Market Complexr Adaptive System developed
by Argonne National Laboratory (Conzelmann et al. 2005);

— Marketecture from Los Alamos National Laboratory'® (Atkins et al.
2004);

18T eading scientists who developed the Marketecture model at the Los Alamos
National Laboratory have now gone to the Network Dynamics and Simulation



30 A. Weidlich, D. Veit

N-ABLE™ | the Agent-Based Laboratory for Economics developed at
Sandia National Laboratory (Ehlen and Scholand 2005);

Simulations for Coupled Systems within the GridWise™ program at
Pacific Northwest National Laboratory (Widergren et al. 2004); and
NEMSIM, the Australian National Electricity Market Stmulator which
is under development at CSIRO (Batten and Grozev 2006).

These models rely on very detailed databases of the regions under study,
which includes the topology of the transmission grid and other physical con-
straints, differentiated load data and detailed cost data of the power plants.
The issues that most of the models address are questions of best market
designs to prevent the exercise of market power, transmission system reli-
ability, or also environmental regulation measures. The models seem to be
designed as a decision support for concrete policy making and not primar-
ily for academic research. Consequently, the model descriptions are rather
vague and much of the exact implementation of agent behavior or simulated
scenarios remains unclear.

Some of the cited papers contain pointers to the literature about learn-
ing algorithms though no actual model implementation using any kind of
agent learning is presented. The agents’ behavior has been described in
more detail for two models: In one scenario simulated with the N-ABLE™™
model, agents apply a heuristic planning process in the form of a greedy
scheduling algorithm. The research question of this scenario was the in-
fluence of real-time pricing contracts on consumption and profitability in
the retail electricity market (Ehlen et al. 2007). In the Marketecture model
agents follow one out of three possible fixed strategies: they set bid prices
and quantities according to the competitor, oligopolist, or the competitive-
oligopolist strategy. The competitor strategy refers to bidding at marginal
cost, whereas the oligopolist bids at the point where the marginal revenue
and marginal cost functions intersect; the competitive-oligopolist strategy
lies at a random point in the range between the two other strategies. Buy-
ers’ and sellers’ surplus, efficiency and market clearing prices/quantities are
compared for three different market clearing algorithms (Atkins et al. 2004).
However, as agents do not adapt to the different market clearing rules, no
well-grounded conclusions can be drawn on the efficiency of these rules.

In summary, the scientific usefulness and academic contribution of large-
scale AB models that integrate an enormous amount of details (for example,
the demand representation in the Marketecture model goes down to the level
of every individual and its activity and mobility profile) has not yet been
proven. The practical usefulness cannot be judged here, as hardly any —
or only illustrative — simulation results from the cited models are publicly
available.

Science Laboratory (NDSSL) at Virginia Tech, so it is not clear whether they
continue the work on Marketecture there. AB electricity market simulation seems
to be one out of many other topics investigated at the NDSSL lab.
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4 Summary and Discussion

In order to allow a better comparison and a brief overview of the different
modeling approaches, the presented papers are shortly summarized in Ta-
ble 1 (entries in this table are categorized according to the applied learning
model applied; within one category, the cited papers are ordered alphabet-
ically). In those cases in which the same authors have described similar or
enhanced models in several papers, only the most relevant reference has
been specified. As for their rather practical application and not primarily
academic focus, the large-scale simulation models presented in section 3.7
are not included in this overview.

The comparison of the different models shows the similarities and dif-
ferences between current AB electricity models:

— The large majority of models neglect transmission grid constraints.

— Most of the models represent the demand side as a fixed, price-insensitive
load.

— In most models, the agents’ learning task is to set profit-maximizing bid
prices or mark-ups. Capacity withholding strategies are mostly not mod-
eled explicitly; however, setting a high bid price can also be interpreted
as (economic) withholding.

— No preferred learning representation or trend towards specific models of
behavior can be observed. A number of models rely on the reinforcement
learning algorithm formulated by Erev and Roth (1998) (and modifica-
tions of this algorithm); however, they do not form a considerable ma-
jority. Genetic algorithms seem to be left apart, though not completely
abandoned.

— Most research questions of AB modelers center around market power and
market mechanisms. The comparison between pay-as-bid and uniform
pricing is a very popular question. Here, results from different models
seem to be consistent; most authors find that agents bid higher under
pay-as-bid, but overall prices are higher under uniform pricing. Another
important research issue in for AB electricity modelers is the assess-
ment of potential for market power under different market structures or
market mechanisms.

The amount of papers reviewed in this survey shows that electricity
market research applying AB simulation is a very active field of research.
One might describe it as adolescent — it has departed from its infancy which
began in the last years of the past century. This is documented by the ap-
pearance of the first notable papers that have successfully been published
in energy-related or other journals. However, we still observe a large het-
erogeneity in representing boundedly rational actors in electricity markets,
and also in validation techniques, result evaluation and quality assessment,
or simply in labeling. Agent-based modeling allows for great flexibility in
specifying how agents behave; the reverse of this medal is that models are
rarely comparable, and can sometimes not be described in all necessary de-
tail. On its way to adulthood, hence, several methodological questions will
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have to be discussed by researchers who are active in this field, in order
to increase the comparability of different models. Some of these issues are
enumerated in the following.

Agent Learning Behavior  The common element of all models pre-
sented here is adaptivity. Agents are able to learn to achieve their goals
(high profits, high plant utilization etc.) given the environment they are
placed in. The way in which learning takes place is implemented differ-
ently in almost all models. Even if two researchers use the same basic
learning algorithm, they may define and describe it in a different man-
ner. Parameter values are often not justified properly and are not fully
revealed. A precise description of an agent’s action domain or the space
of possible environmental or internal states is not defined clearly in ev-
ery paper. Especially in the models applying Q-learning, the definition
of environmental states has implications on the model results; however,
none of the cited papers using Q-learning argues why the states have
been set as they are, and whether they have the Markov property.
Moreover, the choice of the learning algorithm itself is hardly argued
and justified in any paper. Some algorithms like e.g. the Erev and Roth
reinforcement learning formulation, are popular and used by many re-
searchers. Others are hardly used at all, without apparent reason.'® Most
papers do not answer the question why they chose a specific learning
model and how good it performs in comparison to others. Also, it might
be interesting to discuss if there is any meaningful minimum level of
rationality that agents participating in electricity markets should be en-
dowed with.

Market Dynamics and Complexity  As stated in the introduction,
the electricity sector is characterized by the interlinking of multiple mar-
kets, and by additional complexities through limited transmission ca-
pacities and unit commitment constraints. Most papers considered here
simplify real-world markets significantly; they consider only one market
or neglect technical constraints. Some AB models are so highly stylized
that they cannot claim to be more realistic than traditional equilibrium
models. Also, the focus of most researchers is placed on convergence to-
wards stable market outcomes. The out-of-equilibrium dynamics or the
way towards an equilibrium are not considered. It might also be interest-
ing to examine under which circumstances agents reach an equilibrium
outcome and when they fail to do so; or, in case of multiple equilibria,
which outcome occurs more frequently and how robust these outcomes
are against some changes in parameter values.

9T6 give an example for a learning representation that has hardly gained any
attention by AB electricity researchers, one might mention Experience-Weighted
Attraction, which is a learning model that combines aspects of reinforcement
learning and belief-based learning. It has been formulated by Camerer and Ho
(1999) and has shown a good fit when compared to three classes of games.
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These considerations also lead to the question of what can at all be
considered the outcome of an agent-based simulation. Most researchers
let the simulation run a specified number of iterations and then calcu-
late some aggregate values from the late iterations (considering early
iterations as a settling phase for the learning algorithm). Usually the
results are boiled down to one convergence price per simulation. We are
not aware of any paper in which the characteristics of the time series
of prices are examined in more detail (in order to answer questions like
“How volatile are prices?”, “Can price spikes be observed?”, “Are prices
mean reverting?”, etc.). Also, the agents’ profits and success of different
trading strategies are rarely discussed.

One important aspect of the electricity sector that can perhaps best
be represented in AB models is not considered in any of the presented
papers: bilateral trading. It might be interesting to compare the effi-
ciency of market outcomes in a bilateral setting with that of a centralized
auction. Moreover, vertical integration could realistically be modeled in
agent-based simulations. With few exceptions, however, this aspect is
neglected in current agent-based electricity sector models. We would
suggest that these still neglected factors should be stressed more in fu-
ture modeling approaches.

Calibration and Validation Calibrating and validating agent-based elec-
tricity models is a challenging task, and only few guidelines for this pro-
cess have yet been defined. To our knowledge, only Macal and North
(2005) have reported the process of validating their model using differ-
ent techniques. Many of the reviewed papers in this survey lack infor-
mation about empirical model validation; those researchers who have
undertaken some empirical validation proceeded in heterogeneous ways.
While standard verification and validation techniques for simulation
models (e.g. described by Sargent 2005 or Law 2007) can and should also
be applied for AB simulations, it is difficult to establish credibility in
the implemented agent behavior. Very recently, the need for reliable val-
idation techniques has obviously been recognized. AB researchers have
analyzed and suggested procedures and guidelines for calibrating and
validating agent-based simulation models, e.g. Windrum et al. (2007),
Marks (2007), Richiardi et al. (2006), Midgley et al. (2007), and a whole
journal special issue is devoted to this topic (Fagiolo et al. 2007). These
general suggestions should now be assessed with regard to their useful-
ness for electricity modeling purposes. The development of guidelines for
assuring the validity of AB electricity models would greatly benefit the
research quality and diminish the heterogeneity of approaches in this
field. It should thus be one of the main tasks for future work.

Model Description and Publication  Just as model verification and
validation is done very differently in the cited papers, so is the descrip-
tion of the model, its parameters, and the results. Some papers do not
deliver information about the number of runs they have conducted, some
do not even publish all model parameters so that it is not possible to
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replicate the reported results. It would be helpful if some standard way
of model description, as it is conventional for other economic method-
ologies, became accepted in the medium-term.

Presumably, many models are still used by their developers, so that these
are reluctant to make their source code available. However, this would
greatly benefit the research field, because researchers could revise and
check the implementations of others and could also reuse parts of them.
Leigh Tesfatsion has taken the initiative in this direction by setting up
a website with links to published sets of AB electricity model source
code?® (and by publishing her source code as well).

5 Conclusion

This paper has critically reviewed a considerable amount of relevant pa-
pers in agent-based electricity market research. Table 1 summarizes the core
characteristics of the cited work and displays the similarities and differences
between the approaches. In Section 4 we have identified some of the current
problems facing this research methodology that require further effort and a
consolidation of the approaches pursued by different research groups. Espe-
cially sound argumentations for the choice of specific learning algorithms,
more careful and well documented validation and verification procedures as
well as the appropriate publication of details of concrete simulation models
are crucial for the further development of agent-based electricity market
modeling.

Despite the open issues and problems, AB electricity research has been
successful in recent time. Many AB researchers have successfully replicated
core characteristics of today’s electricity markets using models with adap-
tive, self-seeking agents. With a decrease of heterogeneity between com-
peting models, and with increasing consensus on important methodological
questions, the field of AB modeling can soon become one major strand of
research for the analysis of complex electricity systems.

2Ohttp:/ /www.econ.iastate.edu/tesfatsi/ElectricOSS.htm
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