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Sector - The Case of Wholesale Power Trading in

Germany
Anke Weidlich and Daniel Veit

Abstract—This paper reports on results from an agent-based
simulation model that comprises three interrelated markets in
the electricity sector: a day-ahead electricity market, a market
for balancing power, and a carbon exchange for CO2 emission
allowances. Agents seek to optimize trading strategies over the
two electricity markets through reinforcement learning; they
also integrate market results from emissions trading into their
reasoning. Simulation outcomes show that the model is able to
closely reproduce observed prices at the German power markets
for the analysis period of 2006. The model is thus applicable for
analyzing different market designs in order to derive evidence
for policy advice; one example for such an analysis is given in
this contribution.

Index Terms—Agent-Based Computational Economics, day-
ahead market, balancing power, CO2 emissions trading, market
interrelations.

I. I NTRODUCTION

ELECTRICITY markets rank among the most complex of
all commodity markets operated at present. The insti-

tutions that set the framework for power generation, trans-
portation and retail supply must be designed in a way to
ensure that the three main goals of energy supply can be met:
environmental sustainability, economic efficiency and security
of supply. Simultaneously, technical reliability requirements,
as well as transmission and unit commitment constraints must
be taken into account. These requirements have resulted in the
development of several interrelated markets, such as power
exchanges, balancing power markets, markets for emission
allowances and others. The ensemble of these interrelated
markets has to be analyzed together if advice for good market
design is to be derived. The analysis of markets in the
electricity sector is further complicated by the presence of
few dominating and vertically integrated firms. Models that
assume perfect competition are inappropriate for representing
this oligopoly of bidders in a realistic manner. While many
theoretical approaches assume that market participants will
bid competitively, and only interact once, wholesale electricity
markets involve an oligopoly of bidders who trade repeatedly.
This constellation encourages strategic bidding. Playersseek
to ameliorate their bidding strategies continually, basedon
their experience gained in previous trading days. Thus, realistic
electricity market modeling must account for strategic bidding
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by dominant players, learning from daily repeated interaction,
and for the dynamics stemming from multiple interrelated
markets. In this context, the question arises which market rules
or which regulatory framework is best appropriate to ensure
efficient market outcomes.

The complexity of the electricity sector and its high impor-
tance for a competitive economy calls for modeling methods
that are capable of representing the relevant complex aspects
and allow gaining insights into the dynamics of power markets.
Computational methods, and agent-based (AB) simulations in
particular, are flexible and useful tools that support analysis
in the process of engineering electricity markets. They also
offer the possibility of modeling agents that adapt to their
environment, i.e. thatlearn their best strategies from repeated
interaction, thereby following a proposition formulated by
Alvin E. Roth [1]: “models of learning with the ability to
predict behavior in new environments will be a valuable
addition to the designer’s toolbox [...].” Agent-based modeling
offers great flexibility for specifying different scenarios and
can be used as fully controllable virtual laboratories for
testing economic design alternatives in order to determinethe
particular market designs that perform best in an environment
of selfish agents [2].

In this contribution, an agent-based model of several inter-
related markets in the electricity sector is presented. During
the last decade, many agent-based simulation models of elec-
tricity markets have been developed (see [3] for a survey).
Most approaches use reinforcement learning algorithms for
representing the adaptive behavior of players in the market,
e.g. [4], [5], [6]; the use ofgenetic algorithms[7] or learning
classifier systems[8] is less frequent in agent-based electricity
market modeling. While earlier models only regard single,
very simplified market, some recent models comprise several
markets [4], and explicitly model interrelations between them
[9]. The model presented here also takes into account emission
trading, and, unlike many related models, is validated against
empirical historical data.

The remainder of this paper is structured as follows: Section
II describes the markets and agents constituting the simulation
model. Section III reports the empirical validation procedure,
in which a scenario representing the demand and supply
situation in the reference year 2006 is simulated and compared
to real-world prices of the same period. Section IV reports
one example of simulation scenarios that can be run in order
to analyze different market structures. Finally, Section V
concludes.



IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, JULY 2008 2

II. T HE SIMULATION MODEL

The simulation model comprises three markets: a day-ahead
electricity market, a market for positive minute reserve (bal-
ancing power), and an exchange for CO2 emission allowances.
Agents can be categorized as market operators, generators,
load serving entities, or CO2 market participants.

A. Agents

Generator agents operate power plants and sell their gen-
eration output either on the day-ahead electricity market or
– if their power plants meet the technical requirements for
delivering minute reserve – on the balancing power market,
and buy or sell CO2 emission allowances if they operate
fossil fuel fired plants. They are characterized by their power
plant portfolios, where each plant is defined through several
parameters such as its (constant) marginal generation cost, the
net installed capacity, no-load costs, or its emission factor,
denoting how much CO2 emissions are associated with every
MWh of output. The merit order of the total installed capacity
by all agents is depicted in Figure 5.

Load serving entities demand electricity on the day-ahead
market. They are characterized by their hourly load profiles.
The load profiles applied in the simulations presented here are
graphically displayed in Figure 6.

CO2 market participants other than the generator agents
constitute the external demand and supply of allowances. They
are characterized by their demand or supply quantity and a
valuation at which they wish to sell or buy CO2 emission
allowances.

For each market in which they act strategically, agents
choose new actions from instances of a reinforcement learning
algorithm, and formulate according bids which they submit to
the market operator. In the current version of the model, only
generator agents act strategically on the day-ahead electricity
market and on the balancing power market.

B. The Day-Ahead Market

The day-ahead market (DAM) is modeled as a sequence of
24 simple call markets for every delivery hour of the following
day. Each agenti owns a set ofGi generating units (g). For
each unit, the available capacity that an agent can govern
in the day-ahead market depends on the trading results on
the balancing power market (BPM), as the latter is cleared
earlier. If an agent has sold (part of) a plant’s capacity on
the balancing power market, his available capacityqavail is
given by the total net installed capacityqnet reduced by the
amount of committed capacityqcomm . The available capacity
is calculated separately for every hourh; the corresponding
committed quantity is the capacity sold in the bidding block
k that contains the specific hour,k(h):

qDAM,avail
h,i,g = qnet

i,g − qBPM,comm

k(h),i,g (1)

On every trading day, an agent can submit a set of hourly
bids for each power plant it owns. One supply bid consists
of a bid quantity and the price at which the quantity is
offered. The agent formulates the bids according to the output

of the reinforcement learning algorithm, thereby finding the
best actions over a two-dimensional action domain. The price
dimensions allows bid prices from 0 to 100 EUR/MWh, in 21
discrete steps; the bid quantity that agents can choose ranges
from fractions ofβ = 0 to 100 % of the available capacity, in
six discrete steps. The set of bidsbDAM

h,i,g submitted to the day-
ahead market by agenti for delivery hourh, which contains
separate bids for each generating unitg, is defined as follows:

BDAM
h,i =

{〈

pDAM
h,i,g , q

DAM
h,i,g

〉

: g = 1, ..., Gi

}

(2)

with

qDAM
h,i,g = βh,i,g · qDAM,avail

h,i,g , 0 ≤ qDAM
h,i,g ≤ qDAM,avail

h,i,g (3)

If βh is equal to zero, no bid is formulated, as bid volumes
have to be higher than zero. This situation can be interpreted
as total capacity withholding for the respective plant.

Market clearing is effected by sorting all supply bids in
ascending, and demand bids in descending price order. In case
of equal bid prices, bids are sorted in descending volume order;
priority between two identical bids is determined randomly.1

The intersection of the so-formed supply and demand curves
sets the resulting pricePDAM

h at which all successful bids are
remunerated.

In the simulations presented here, the demand side of the
day-ahead market is represented as a fixed price-insensitive
load. Data of the hourly system’s total load is used for
representing electricity demand. The assumption of a fixed
load is a useful simplification. In the short-term, it is re-
alistic to assume that electricity consumers do not react to
price changes, because they usually do not have any price
information at short notice that allows them to adapt their
consumption to the price signals. As the focus here is placed
on on short-term market dynamics, fixed price-insensitive load
is a valid assumption. As it was the case in the real-world
system during the time frame under study, overall electric
load L never exceeds the total installed net capacity of all
generators, i.e.

Lh ≤
∑

i

∑

Gi

qnet
h,i,g ∀h (4)

C. The Balancing Power Market

The implemented balancing power market represents pro-
curement auctions for positive minute reserve, and is designed
in a similar fashion as the minute reserve auctions operated
by the four German transmission system operators. More
precisely, the specifications defined in a recent adjudication
issued by the responsible regulatory authority [10] are already
represented in the BPM implemented in the electricity market
simulation model.

A bid on the balancing power market contains an offer
quantity in MW and of two bid prices: thecapacity price,
i.e. the price for holding capacity in reserve during the whole

1Before the clearing process, all bids are randomized in orderto avoid
unintended recurrent priorities in cases of identical bids.
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bidding period, and theenergy price; i.e. the price a generator
is paid for produced minute reserve in case his plant is actually
deployed for regulating purposes.

Similarly to the day-ahead market, the domain of possible
actions on the market for balancing power market is two-
dimensional; the two dimensions are capacity prices and
energy prices. Possible prices range from 0 to 200 EUR/MW
in 21 discrete steps for the capacity (cap) price and from 0 to
100 EUR/MWh in five steps for the energy price.

Agents with power plants that are technically able to deliver
minute reserve (MR) can sell capacity on this market. These
plants have to allow fast changes in load and must be ready
to be fully activated within 15 minutes. The capability of
minute reserve delivery is expressed through the indicator
function I(g,MR) which is equal to zero if plantg is slowly
controllable (not suitable for minute reserve delivery) and one
if it is fast controllable and can, thus, bid on the BPM.

As the balancing power market is cleared before the day-
ahead market, the agent’s available capacity of every power
plant that is technically suitable for minute reserve delivery
is its net installed capacity,qBPM,avail

k,i,g = qnet
i,g . After deciding

which action to take, the agent formulates the bid that he wants
to submit to the balancing market operator; the specification
of a balancing power bid is given in Formula 5.

BBPM
k,i = {〈pBPM,cap

k,i,g , pBPM,energy
k,i,g , qBPM

k,i,g 〉

: g = 1, ..., Gi|I(g,MR) = 1}
(5)

with qBPM
k,i,g = qBPM,avail

k,i,g (6)

The demand side of the balancing power market is rep-
resented as a predefined quantity of positive minute reserve
that has to be procured. Six equally long bidding blocks of
four hours length are differentiated for every trading day:
from 0 to 4 am, from 4 to 8 am, and so forth. The tendered
balancing capacity quantityQBPM

k is equal for every bidding
block (for the simulations presented in this chapter,QBPM

k =
3, 500 MW ∀k).

In procurement auctions with two-part bids, the market
clearing procedure distinguishes two aspects: thescoring rule
and thesettlement rule[11]. The scoring rule defines how to
compare bids and the settlement rule determines payments.
In the balancing market developed here, bids are compared
solely on the basis of capacity bid prices, i.e. the bids with
the lowest capacity bid price are considered first for holding
capacity in reserve, until demand is met. If minute reserve
is actually needed for frequency control on the day of deliv-
ery, deployment is decided among those bids that had been
successful on the trading day. A merit order is constructed
based on the energy price only, and bids with lowest energy
prices are deployed first, until demand is met. Payments both
for holding capacity in reserve and for delivering energy for
regulating purposes are based on the respective bid prices.
These scoring and settlement rules both correspond to the
specifications set by German regulation [10].

D. Emissions Trading

The CO2 emission allowance market (CO2M) is executed
at the end of each trading day. It is assumed that all agents
seek to even up their open positions every day. This entails
that agents who sell electricity also make sure to have enough
allowances for the carbon dioxide emissions associated to their
generation output. Agents who have surplus allowances try to
sell them at the market price. Market participants in real-world
carbon exchanges also have the possibility of buying (selling)
more allowances than currently needed if they expect prices
to rise (fall) in the future. Strategies of this kind, i.e. buying
and selling allowances to profit from price changes instead
of using them directly for compliance can be categorized as
speculation. Speculation is not considered in this model.

All generator agents that own fossil fuel fired power plants
are initially endowed with a certain amount of CO2 al-
lowances. The initial allocation of allowances is calculated
according to a grandfathering rule, i.e. based on past emissions
for each single power plant (this approach corresponds to the
actual emissions trading procedure fixed in [12] and [13]).
The sectors outside the electricity industry that are covered
by the emissions trading scheme submit fixed supply and
demand quantities every day. As little is known about CO2

mitigation costs of these sectors – and consequently about their
valuation for allowances – their parameter values for supply
or demand quantities and valuations are calibrated so as to
produce average prices that roughly correspond to observed
prices in the real-world carbon exchanges.

The agents’ daily trading quantities are calculated on the
basis of initial endowmentsqCO2,init

y issued for yeary, and
of trading success on the current trading day. The amount of
carbon dioxide emitted during electricity generation,qemit ,
is determined by volumes sold at the day-ahead electricity
marketqDAM,sold and by deployed minute reserveqBPM,depl .2

The quantities are multiplied with the emission factorωg of
plant g, quantifying the CO2 emissions associated with every
MWh of power output.

qCO2,emit
t,i =

∑

Gi

(

24
∑

h=1

ωg · qDAM,sold
h,i,g +

6
∑

k=1

ωg · qBPM,depl
k,i,g

)

(7)
The remaining allowance budget that an agent has at his

disposal at timet (day of the yeary) is divided by the
remaining days for which the allowances were issued in order
to calculate a daily budget. This budget is subtracted from the
allowance quantity needed for power generation, thus resulting
in the bid quantity that agenti submits to the CO2 market
operator. In consequence, if an agent’s budget for the current
day is larger than the need for allowances, his bid quantity
becomes negative, which corresponds to a selling bid.

qCO2M
t,i = qCO2,emit

t,i −
qCO2,bud
t,i

365 − t− 1
(8)

2If the deployment of minute reserve becomes necessary, this would occur
one day after trading on the balancing power market. For simplicity, it is
assumed that minute reserve quantities actually deployed arealready known on
the trading day. In real-world practice, only around 2 % of procured capacity
is actually deployed [10], so these quantities are negligible.
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Bids on the CO2 allowance market contain a volume of
allowances3 that is offered or asked, a bid price and the
compliance period (cp) for which the allowance should be
valid (as no speculation is considered, the compliance period is
always equal to the current period). Buying bids have positive
volumes, and selling offers have negative volumes. Each agent
submits one single bid on the allowance market at timet (day
of the yeary), representing his daily allowance requirement or
surplus which is calculated for the whole portfolio of power
plants he owns.

bCO2M
t,i =

〈

pCO2M
t,i , qCO2M

t,i , cp
〉

(9)

The CO2 emission allowance market is modeled as a sealed
bid double auction. Demand and supply bids are summed up to
form supply and demand functions in the same way as on the
day-ahead electricity market, and the uniform market clearing
price is determined by the intersection of both curves. At this
allocation, a maximum of social welfare is reached.

The remaining allowance budget is updated at the end
of each trading day for the following day. The amount of
allowances used for emitted CO2 quantities qCO2,emit are
subtracted from the current budget, and resulting trading
volumesqCO2M ,res (positive for bought allowances, negative
for sold volumes) are added to it. The budget at timet = 0 is
the initial allowance quantity issued for yeary.

qCO2,bud
t+1,i = qCO2,bud

t,i − qCO2,emit
t,i + qCO2M ,res

t,i (10)

with qCO2,bud
0,i =

∑

Gi

qCO2,init
y,g (11)

Agents do not act strategically on the market for CO2

emission allowances – they do not set bidding strategies
through reinforcement learning. However, the costs incurred
from allowance prices influence trading strategies on the
electricity markets, as specified in the following section.

E. Market Interrelations

The three markets that form the electricity sector simulation
model are interrelated through the agents’ bidding strategies. A
power generator has the choice to bid his generating capacity
on the day-ahead or on the balancing market (for those
plants that fulfill the technical requirements to deliver minute
reserve), and has to trade off between these two options.
After market clearing on the first market, an agent can bid
his remaining unsold capacity on the second market. Through
varying the bid quantity on the day-ahead market, agents can
influence and optimize their joint strategy on both electricity
markets.

While optimizing their supply bids, agents consider oppor-
tunity costs that they could have achieved on the other market
if they had sold their capacity there. Prices for carbon dioxide
emission allowances are also included into the reinforcement
as opportunity costs. A generator would always have the
opportunity to solely sell certificates, thereby realizinga profit.

31 EUA (European Allowance) allows for the emission of 1 t of CO2.

Consequently, he aims at attaining a profit at least as high as
he could have achieved through selling allowances.

Agents learn strategies separately for the day-ahead and
for the balancing power market. In the implementation, they
have individual instances of the learning algorithm for each
of the two markets. Moreover, strategies for each bidding
block on the balancing power market and for each hour on
the day-ahead market are learned separately. Opportunity costs
between the two electricity markets only occur for power plant
types that are suitable for delivering minute reserve power.
Power output from all other plants can consequently only be
bid on the day-ahead market, and opportunity costs from the
balancing power market are not considered for these plants.

The behavioral representation of the agents’ search for profit
maximizing strategies is modeled with Q-learning [14]. For
this learning algorithm, differentstateshave to be defined. In
the model presented here, states are based on bid prices and
trading success. Bid prices can be categorized as low (lower
than or equal to one third of the maximum admissible bid
price), high (higher than or equal to two thirds of the maximum
admissible price) or intermediate (all remaining prices).A bid
can further be categorized as marginal or intra-marginal, in
which case it was successful, or as extra-marginal for a bid
that was not successful. All combinations of bid prices and
success form the six states that are differentiated in the model.

ReinforcementsR that are fed back to the update function of
the learning algorithm are calculated for both power markets
after all markets have cleared on the current trading day. They
are based on the profitπ earned on the respective market.
In order to facilitate setting initial Q-values for the learning
algorithms, reinforcements are set relative to the maximum
possible profitπmax that an agent can earn on the market.
Consequently, the range of possible reinforcements is the same
for all learning tasks:0 ≤ R ≤ 1; initial Q-values are set to
Q0 = 1. Maximum profits depend on variable costscvar of
the power plant deployed, and differ across plants.

Most generator agents own a portfolio of power plants over
which they can maximize profits. At the same time, bids are
set and learned separately for each power plant. Consequently,
the reinforcement for learning the bidding strategy of one
plant should contain some information about the performance
of the whole portfolio. The influence of the portfolio profit
on the reinforcement is set through theportfolio integration
parameterψ. Throughout the simulations presented here, it is
set toψ = 0.5. This means that half of the reinforcement is
defined through the payoff earned from the power plant for
which the strategy is learned, and half of it is given by the
performance of the agent’s whole portfolio.

RDAM
h,i,g = (1 − ψ) · πDAM

h,i,g /π
DAM,max
i,g

+ψ ·

∑

Gi
πDAM

h,i,g /π
DAM,max
i,g

Gi

(12)

with

πDAM
h,i,g = qDAM,sold

h,i,g · PDAM
h − cvar − cBPM,opp

h,i,g − cCO2M ,opp
h,i,g

(13)
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πDAM,max
i,g = qnet

i,g · PDAM,max − cvar (14)

cBPM,opp
h,i,g = I(g,MR) · PBPM,cap

k(h) · qDAM
h,i,g (15)

cCO2M ,opp
h,i,g = PCO2M

t(h) · qCO2,emit
h,i,g (16)

The reinforcement for trading on the balancing power mar-
ket is defined in a similar manner as on the day-ahead market.
If no minute reserve energy is actually deployed for frequency
regulation, profits are only defined by capacity prices and no-
load costs (nolc) over the number of hours per bidding block
|h ∈ k|, i.e. the cost for keeping the power plant in a stand-by
state. If minute reserve is deployed, no-load costs do not occur
and the profit gained from the energy price minus the variable
cost has to be added. For simplicity, only the first of the two
cases is formulated below. For the calculation ofπBPM,max,
only capacity prices are considered.

RBPM
k,i,g = (1 − ψ) · πBPM

k,i,g /π
BPM,max
i,g

+ψ ·

∑

Gi
I(g,MR) · πBPM

k,i,g /π
BPM,max
i,g

∑

Gi
I(g,MR)

(17)

with

πBPM
k,i,g = qBPM,cap,sold

k,i,g ·PBPM,cap
k − cnolc · |h ∈ k| − cDAM,opp

k,i,g

(18)

πBPM,max
i,g = qnet

i,g · PBPM,cap,max − cnolc · |h ∈ k| (19)

cDAM,opp
k,i,g = qBPM,cap

k,i,g ·
∑

h∈k

PDAM
h (20)

III. VALIDATION

Empirical validation of agent-based simulation models must
take place on two levels: amicro-validationrequires a detailed
analysis of which behavioral representation is best suitedfor
modeling agents engaged in daily repeated electricity trading.
In this context, numerous tests of different learning algorithms
(Q-learning, the learning model formulated by Erev and Roth
[15], and Experience-Weighted Attraction) have been carried
out by the authors. This procedure will not be reported here.

On the basis of a properly micro-validated learning model,
the next validation step can be proceeded. Themacro-
validation entails the analysis of macro variables that result
from the agents’ interaction. Here, market prices that comeout
of simulations with the presented model, run with data input
that realistically represents the German electricity sector, are
compared to empirically observed prices in order to verify if
real-world day-ahead and balancing power market results can
be properly reproduced with the simulation model.

In the following, the model is run with data input that
characterizes the German electricity industry during the anal-
ysis period of 2006. The industry’s power plant portfolio is
represented in an aggregate way, based on published data

about installed capacity. The four dominant players in the
German power market (E.ON AG, RWE Power AG, Vattenfall
Europe AG and EnBW Kraftwerke AG) are represented in
more detail, and further players are introduced so that the
overall installed capacity and the proportions of different
generation technologies (coal-fired, gas-fired, hydro etc.) are
properly represented. Within the power plant portfolio of one
generator, all plants using the same fuel or technology are
subsumed under one generating unit, and average efficiencies
are assumed for these units. The resulting merit order of all
power plants is depicted in Figure 5.

The system’s total load data provided by theUnion for
the Co-Ordination of Transmission of Electricity(UCTE)
constitutes the data input for the demand side. Those days
for which the system’s total load is published (i.e. every
third Wednesday of a month) are simulated, and resulting
prices are compared to empirically observed prices at the
European Energy Exchange (EEX) spot market and at the
German balancing power markets in the year 2006. As the real-
world markets may show extraordinary prices on the specific
simulated days, additional average daily courses of pricesover
all workdays of the same month are calculated and compared
to the simulation outcomes.

In all simulations, agents apply Q-learning with a learning
rate ofα = 0.5, a discount rate ofγ = 0.9 and anε-greedy
action selection rule withε = 0.2. Simulations are run over
7,300 iterations, and results are averaged over ten simulation
runs with different random number seeds. The outcome of one
simulation run is defined as the average market price over the
last 365 iterations.

Figures 1 and 2 show examples for simulation results. Con-
tinuous lines plot the simulation outcome for the simulatedday
of the month; dashed lines plot the empirically observed prices
of the same day, and dotted lines represent average prices over
all workdays of the specific month. Top figures display hourly
results on the day-ahead market, where empirically observed
prices correspond to prices for hourly contracts at the EEX
spot market. Bottom figures show results from the balancing
power market for the six bidding blocks, and empirically
observed prices are averaged over the prices published by the
four balancing market operators.4

Prices in summer and transitional (spring/fall) months (see
example in Figure 1) are quite closely reproduced by the
simulation model. Prices in winter months (see example in
Figure 2), however, show larger deviation between simulation
outcomes and real-world prices. In some hours, prices even
exceed 100 EUR/MWh; as the agents’ action domains in the
simulations only allow for bid prices up to 100 EUR/MWh,
prices above this level cannot be replicated by construction
of the model. Enlarging the action domain might be a way
to ensure that prices higher than 100 EUR/MWh can also
be simulated. However, a sensitivity analysis reveals that

4In 2006, bidding blocks were defined differently across the four balancing
power markets existing in Germany. For comparison with the simulated data,
average prices for the six defined bidding blocks are interpolated. Since
December 2006, all four transmission system operators implement one joint
minute reserve procurement auction with six bidding blocks equal to those in
the simulation model.
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Fig. 1. Example results for September 2006: simulated and real-world prices
on the day-ahead (top) and balancing power market (bottom)

simulation outcomes are quite sensitive towards the definition
of the agents’ action domain. If the range of possible bid
prices on the day-ahead market is augmented to 110, 120 or
150 EUR/MWh, average yearly prices rise by 6.2, 12.5, and
31.3 %, respecitively.

The simulated prices observed on the two electricity markets
are a consequence of agents bidding subsequently on these
markets and on the CO2 allowance exchange, and optimizing
their strategies in face of market interrelations. Demand on the
balancing power market, i.e. tendered minute reserve capacity,
is equal for all bidding blocks. This market is cleared first,
and the day-ahead market is operated subsequently. As the
available supply and demand quantities in the balancing power
market are the same in every hour, differences in prices
between the bidding blocks can only result from the inclusion
of opportunity costs into the agents’ reasoning.

The simulation outcome on the balancing power market
shows characteristic daily courses of prices, in which capacity
prices in bidding blocks 3 and 4 – and 5 in winter months
– are considerably higher than those in the nocturnal bidding
blocks. Similar characteristics can be observed in the real-
world balancing power markets in Germany, although the
high prices in the fifth bidding block that occur in most
winter months are not reproduced by the simulation model.
However, the observation that the basic characteristics and the
order of magnitude of prices for day-ahead contracts and for
balancing power are well simulated is an encouraging result
and strengthens confidence in the model validity.

The effect of CO2 emissions trading on simulated prices
is roughly comparable to that observed in the real market; a
large share of opportunity costs are successfully passed onto
electricity bids, which ultimately raises electricity prices. This
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Fig. 2. Example results for February 2006: simulated and real-world prices
on the day-ahead (top) and balancing power market (bottom)

can be concluded from a comparison of prices in simulations
with and without emissions trading (not reported here).

IV. I MPACT OF TENDEREDBALANCING CAPACITY ON

ELECTRICITY PRICES

The agent-based electricity sector simulation model pre-
sented in this paper can be used as a means of testing
different market structures and market mechanisms in orderto
evaluate their influence on power trading outcomes, especially
on resulting market prices. Among the scenarios that can be
simulated with this model, one problem of interest in the
German electricity sector is exemplified in the following.

In accordance with many other studies about European
electricity markets, an expertise by order of the German
Federation of Industrial Energy Consumerscomes to the
conclusion that electricity markets in continental Europeare
not structured in a sufficiently competitive way. As regards
the interplay between the day-ahead electricity market and
the balancing power market, it furthermore concludes that the
latter particularly offers potential for market power exertion
through subtracting capacity from wholesale trading [16].

In real-world practice during the year 2006, the procured
positive balancing power capacity was nearly 4,000 MW
for primary and secondary reserves, and between 3,150 and
3,420 MW for minute reserve. In the model, procured minute
reserve capacity is set to 3,500 MW, while primary and
secondary reserve procurement is not considered. In order
to analyze whether and to what extent the effect assumed
in the expertise actually occurs, the amount of tendered
minute reserve on the balancing power market is varied from
1,000 MW to 13,000 MW, and simulated prices are compared.

Classical electricity market models that assume no strategic
bidding would also suggest that market prices rise when
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demand increases. This is directly explained by the merit
order: if load is high, more expensive generating units mustbe
deployed in order to satisfy demand. Thus, only in those cases
in which bidders can successfully raise market prices to an
extent that cannot be explained by the underlying cost structure
alone, it can be concluded that there exists an increased
“potential for market power exertion”.

On the balancing power market, which is cleared first,
7,000 MW of hydroelectric capacity is available at a no-load
costs of 0 EUR/MW per hour and variable (operating) costs of
1.5 EUR/MWh. Additional demand can be satisfied with the
available capacity of the next expensive gas-fired power plants
(no-load costs 100 EUR/MW*h, variable costs 45 EUR/MWh)
in all simulated scenarios of tendered balancing capacity.
Expensive oil-fired power plants do not need to be deployed
for minute reserve purposes, unless they underbid lower cost
hydroelectric or gas-fired generating capacity.

The merit order shift on the day-ahead market, which is
cleared secondly, partly depends on trading results on the
balancing power market. If least-cost plants are deployed for
minute reserve, the variable generating cost of the last unit
necessary to satisfy demand is 4.5 EUR/MWh in a few hours
of very low demand, 20–22 EUR/MWh in the largest part of
all hours, and 45 EUR/MWh in hours of very high demand
and high tendered minute reserve.

The simulation outcomes confirm the effect assumed in
the expertise. Figure 3 (top) shows simulated prices on the
day-ahead market as a function of tendered minute reserve
quantities. Over the simulated range, a nearly linear relation
between balancing power quantities and resulting prices can
be observed. The slope of the curve is steeper for cases
with higher demand – such as in winter months – than in
times of low demand (Figure 3 displays the two months with
the highest and lowest slope for each market). The effect of
varying tendered minute reserve capacity is stronger on the
balancing power market. As depicted in Figure 3 (bottom),
higher tendered capacities lead to considerably higher minute
reserve prices. The functional relation is weakly concave.
Yearly average prices increase from less than 15 up to more
than 90 EUR/MWh, which corresponds to a sextupling of
prices from 1,000 to 13,000 MW of tendered reserve capacity.

The fact that prices do not only decrease when tendered
minute reserve quantities rise above the level of 7,000 MW
suggests that the dynamics of competition on the balancing
power market are more influenced by the supply/demand ratio
or opportunity costs from the day-ahead market than by the
underlying cost structure. This can be seen as an indicator for
an increasing market power potential when tendered minute
reserve quantities are elevated. Higher demand on the balanc-
ing power market reduces supply-side competition, so agents
are less forced to bid competitively, leading to higher market
prices. Besides, if more capacity is committed on the balancing
power market, less capacity is available on the day-ahead
market, leading to the same effects on this market, too. As
opportunity costs are taken into account, high prices on one
market tend to result in higher prices on the other market. This
effect especially occurs on the balancing power market, as it is
stronger influenced by the day-ahead market than vice versa.
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Fig. 3. Yearly average prices on the day-ahead (top) and balancing power
market (bottom) for different tendered minute reserve quantities
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Figure 4 shows the prices resulting on the day-ahead market
for all observations (i.e. for all 12*24 simulated hours), and for
varying tendered minute reserve quantities. Observationsare
sorted by demand quantities in the corresponding hours. What
can be observed here is that price increases resulting from
elevated tendered balancing power quantities are strongerin
high demand hours and have a negligible effect in hours of
very low demand. For very high demand and high tendered
balancing capacity, prices even climb up close to the maximum
possible price of 100 EUR/MWh.

V. CONCLUSION

In this contribution, an agent-based simulation model rep-
resenting the core features of the German electricity industry
is presented. The model comprises a day-ahead market for
hourly electricity delivery contracts, a procurement market
for positive minute reserve and a market for CO2 emission
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allowances. Simulated prices from this model are close to
real-world prices in many months of the year 2006, both on
the day-ahead market (compared to EEX prices) and on the
balancing power market (compared to prices on the balancing
power markets operated in Germany). Besides, the influence
of CO2 emissions trading on electricity prices is comparable
to observations from real-world markets.

The presented model can be used to analyze a variety of
possible market structures and market mechanisms with the
aim of finding good market designs that take into account
market interrelations and other aspects of real-world power
systems. Analyses of this kind have been conducted by the
authors, and additional scenarios are currently developed.
Results from these simulations demonstrate the usefulnessof
the agent-based simulation model presented here. One example
presented in this paper is the influence of tendered balancing
capacity on prices on both simulated electricity markets.
Considerable rises in prices can be observed for increasing
minute reserve procurement quantities; in high demand hours,
this leads to a considerable potential for agents to drive market
prices up. The model presented here should be further applied
to test alternative market designs in order to find the best
options of preventing generators from exerting market power.

APPENDIX
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