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Analyzing Interrelated Markets in the Electricity
Sector - The Case of Wholesale Power Trading In
Germany
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Abstract—This paper reports on results from an agent-based by dominant players, learning from daily repeated intéoagt
simulation model that comprises three interrelated markets in and for the dynamics stemming from multiple interrelated
the electricity sector: a day-ahead electricity market, a market markets. In this context, the question arises which markesr

for balancing power, and a carbon exchange for CQ emission hich lat f K is best ate t
allowances. Agents seek to optimize trading strategies over the Or which feguiatory iramework IS Dest appropnaie to ensure

two electricity markets through reinforcement leaming; they €fficient market outcomes.

also integrate market results from emissions trading into their The complexity of the electricity sector and its high impor-
reasoning. Simulation outcomgs show that the model is able to tgnce for a competitive economy calls for modeling methods
closely reproduce observed prices at the German power markets ot are capable of representing the relevant complex tspec
for the analysis period of 2006. The model is thus applicable for s . .

analyzing different market designs in order to derive evidence and allow ,93'”'“9 insights into the dynamics of povyer m&gket .
for policy advice; one example for such an analysis is given in Computational methods, and agent-based (AB) simulations i

this contribution. particular, are flexible and useful tools that support asialy

Index Terms—Agent-Based Computational Economics, day- " the process of engineering electricity markets. They als

ahead market, balancing power, CQ emissions trading, market Offer the possibility of modeling agents that adapt to their
interrelations. environment, i.e. thakarn their best strategies from repeated

interaction, thereby following a proposition formulateg¢ b
Alvin E. Roth [1]: “models of learning with the ability to
predict behavior in new environments will be a valuable
LECTRICITY markets rank among the most complex o&ddition to the designer’s toolbox [...].” Agent-based raliny
all commodity markets operated at present. The instiffers great flexibility for specifying different scenasiand
tutions that set the framework for power generation, transan be used as fully controllable virtual laboratories for
portation and retail supply must be designed in a way testing economic design alternatives in order to deterrfine
ensure that the three main goals of energy supply can be npetrticular market designs that perform best in an enviroime
environmental sustainability, economic efficiency andusigg of selfish agents [2].
of supply. Simultaneously, technical reliability requirents, In this contribution, an agent-based model of several inter
as well as transmission and unit commitment constraintd muslated markets in the electricity sector is presented.rgur
be taken into account. These requirements have resultée inthe last decade, many agent-based simulation models of elec
development of several interrelated markets, such as powmeity markets have been developed (see [3] for a survey).
exchanges, balancing power markets, markets for emissiost approaches use reinforcement learning algorithms for
allowances and others. The ensemble of these interrelatedresenting the adaptive behavior of players in the market
markets has to be analyzed together if advice for good marleeg. [4], [5], [6]; the use ofjenetic algorithmg7] or learning
design is to be derived. The analysis of markets in thatassifier system8] is less frequent in agent-based electricity
electricity sector is further complicated by the presente market modeling. While earlier models only regard single,
few dominating and vertically integrated firms. Models thatery simplified market, some recent models comprise several
assume perfect competition are inappropriate for reptegen markets [4], and explicitly model interrelations betwebarh
this oligopoly of bidders in a realistic manner. While many9]. The model presented here also takes into account emissi
theoretical approaches assume that market participarts wriading, and, unlike many related models, is validated regjai
bid competitively, and only interact once, wholesale eleity empirical historical data.
markets involve an oligopoly of bidders who trade repegtedl The remainder of this paper is structured as follows: Sectio
This constellation encourages strategic bidding. Plageek |l describes the markets and agents constituting the stionla
to ameliorate their bidding strategies continually, based model. Section Ill reports the empirical validation proces
their experience gained in previous trading days. Thudistea in which a scenario representing the demand and supply
electricity market modeling must account for strategicdini  situation in the reference year 2006 is simulated and coeapar
to real-world prices of the same period. Section IV reports
ne/;.S vsv(?;]doliglh ggﬁlogé V'\e/li;ne:]rﬁei\avqith Gtg:emg%i/\_/e:% cgidwfhncggné,uﬁ*j one example of simulation scenarios that can be run in order
’ ' ’ ‘ ' to analyze different market structures. Finally, Section V
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I. INTRODUCTION
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Il. THE SIMULATION MODEL of the reinforcement learning algorithm, thereby finding th

The simulation model comprises three markets: a day_ahggfdst actions over a two-dimensional action domain. Theepric
electricity market, a market for positive minute reserval{b dimensions allows bid prices from 0 to 100 EUR/MWh, in 21
ancing power), and an exchange for £€mission allowances. discrete steps; the bid quantity that agents can choos@sang
Agents can be categorized as market operators, generatBfdn fractions of/3 = 0 to 100 % of the available capacity, in

load serving entities, or COmarket participants. six discrete steps. The set of b8}/ submitted to the day-
ahead market by agentfor delivery hourh, which contains

A. Agents separate bids for each generating units defined as follows:

Generator agents operate power plants and sell their gen- BPAM <p£?]§[aql?%> g=1,.,G;} 2)
eration output either on the day-ahead electricity market o ’ h v

— if their power plants meet the technical requirements for with

delivering minute reserve — on the balancing power market,

and buy or sell C@ emission allowances if they operate DAM _ 3 DAM,avail  (  DAM DAM, avail 3)
fossil fuel fired plants. They are characterized by their @ow i = Phisg " hsig r V= hig = hig

plant portfolios, where each plant is defined through séveralf 3, is equal to zero, no bid is formulated, as bid volumes
parameters such as its (constant) marginal generationtbest have to be higher than zero. This situation can be intergrete
net installed capacity, no-load costs, or its emissionofact as total capacity withholding for the respective plant.
denoting how much Cemissions are associated with every Market clearing is effected by sorting all supply bids in
MWh of output. The merit order of the total installed capacitgscending, and demand bids in descending price order. é&n cas
by all agents is depicted in Figure 5. of equal bid prices, bids are sorted in descending volumerprd

Load serving entities demand electricity on the day-ahepéority between two identical bids is determined randainly
market. They are characterized by their hourly load prafileShe intersection of the so-formed supply and demand curves
The load profiles applied in the simulations presented here gets the resulting pric®”4* at which all successful bids are
graphically displayed in Figure 6. remunerated.

CO; market participants other than the generator agentsin the simulations presented here, the demand side of the
constitute the external demand and supply of allowancesy Thjay-ahead market is represented as a fixed price-insensitiv
are characterized by their demand or supply quantity andoad. Data of the hourly system’s total load is used for
valuation at which they wish to sell or buy GGemission representing electricity demand. The assumption of a fixed
allowances. load is a useful simplification. In the short-term, it is re-

For each market in which they act strategically, agenigistic to assume that electricity consumers do not react to
choose new actions from instances of a reinforcement legrnirice changes, because they usually do not have any price
algorithm, and formulate according bids which they submit tinformation at short notice that allows them to adapt their
the market operator. In the current version of the modely ontonsumption to the price signals. As the focus here is placed
generator agents act strategically on the day-ahead ielgctr on on short-term market dynamics, fixed price-insensitasl|
market and on the balancing power market. is a valid assumption. As it was the case in the real-world

system during the time frame under study, overall electric
B. The Day-Ahead Market load L never exceeds the total installed net capacity of all

The day-ahead market (DAM) is modeled as a sequencegoefnerators’ I-€-
24 simple call markets for every delivery hour of the follogi
day. Each agent owns a set of7; generating unitsg). For Ly < qu
each unit, the available capacity that an agent can govern PG
in the day-ahead market depends on the trading results on )
the balancing power market (BPM), as the latter is clearéd The Balancing Power Market
earlier. If an agent has sold (part of) a plant’s capacity on The implemented balancing power market represents pro-
the balancing power market, his available capagity"’ is curement auctions for positive minute reserve, and is desig
given by the total net installed capacigf“’ reduced by the in a similar fashion as the minute reserve auctions operated
amount of committed capacity™™. The available capacity by the four German transmission system operators. More
is calculated separately for every holuy the corresponding precisely, the specifications defined in a recent adjudinati
committed quantity is the capacity sold in the bidding blocksued by the responsible regulatory authority [10] arezaly
k that contains the specific hout(h): represented in the BPM implemented in the electricity miarke
simulation model.

A bid on the balancing power market contains an offer
antity in MW and of two bid prices: theapacity price
. the price for holding capacity in reserve during the igho

pet, Vh (4)

hyi,g

AM, avail : 1,
Ghovg " = G = Gy ey

On every trading day, an agent can submit a set of houﬁg
bids for each power plant it owns. One supply bid consists

of a bid quantity and the price a_lt which t_he quantity is 1gefore the clearing process, all bids are randomized in ordeavoid
offered. The agent formulates the bids according to theututpnintended recurrent priorities in cases of identical bids
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bidding period, and thenergy pricei.e. the price a generator D. Emissions Trading

is paid for produced minute reserve in case his plant is #gtua The CQ, emission allowance market (CO2M) is executed
deployed for regulating purposes. at the end of each trading day. It is assumed that all agents
Similarly to the day-ahead market, the domain of possibiek to even up their open positions every day. This entails
actions on the market for balancing power market is twehat agents who sell electricity also make sure to have émoug
dimensional; the two dimensions are capacity prices aaflowances for the carbon dioxide emissions associateteio t
energy prices. Possible prices range from 0 to 200 EUR/M¥éneration output. Agents who have surplus allowancetry t
in 21 discrete steps for the capacitag) price and from 0 to sell them at the market price. Market participants in reatd/
100 EUR/MWh in five steps for the energy price. carbon exchanges also have the possibility of buying ¢eglli
Agents with power plants that are technically able to delivenore allowances than currently needed if they expect prices
minute reserve (MR) can sell capacity on this market. Theserise (fall) in the future. Strategies of this kind, i.e.ying
plants have to allow fast changes in load and must be reaalyd selling allowances to profit from price changes instead
to be fully activated within 15 minutes. The capability obf using them directly for compliance can be categorized as
minute reserve delivery is expressed through the indicatgweculation. Speculation is not considered in this model.
function I(g, MR) which is equal to zero if plang is slowly All generator agents that own fossil fuel fired power plants
controllable (not suitable for minute reserve deliverylame are initially endowed with a certain amount of ¢Qal-
if it is fast controllable and can, thus, bid on the BPM. lowances. The initial allocation of allowances is calcetht

As the balancing power market is cleared before the dagccording to a grandfathering rule, i.e. based on past eémiss
ahead market, the agent's available capacity of every povef each single power plant (this approach correspondseto th

plant that is technically suitable for minute reserve defjy actual emissions trading procedure fixed in [12] and [13]).
is its net installed capacitﬂffzf‘gﬂawl = q'e*. After deciding The sectors outside the electricity industry that are aber
which action to take, the agent formulates the bid that hetsva®y the emissions trading scheme submit fixed supply and
to submit to the balancing market operator; the specifinatilemand quantities every day. As little is known about,CO
of a balancing power bid is given in Formula 5. mitigation costs of these sectors — and consequently abeint t
valuation for allowances — their parameter values for suppl
or demand quantities and valuations are calibrated so as to
BPPM = {@ﬁff‘jmp, ﬁffq”@"”%qg%@ produce average prices that roughly correspond to observed
g _ 1 G'il(g MR) = 1} ®) prices in the real-\_/vorld c_arbon ethanges.
P A The agents’ daily trading quantities are calculated on the
basis of initial endowmentg?“>"i* issued for year, and
. BPM BPM, avail of trading success on the current trading day. The amount of
WIth Gyig = Giig ©®) carbon dioxide emitted during electricity generatigi™,
) ) ) is determined by volumes sold at the day-ahead electricity
The demand side pf the bala}ncmg power mgrket IS reRrarketqg?AM:sld and by deployed minute reseny&/M.depl 2
resented as a predefined quantity of positive minute resefyge quantities are multiplied with the emission factay of

that has to be procured._ Six equally long bidding t_)Iocks ‘Eflantg, quantifying the C@ emissions associated with every
four hours length are differentiated for every trading dayywh of power output.

from O to 4am, from 4 to 8am, and so forth. The tendered
balancing capacity quantit9Z is equal for every bidding 24 6
block (for the simulations presented in this chapf™ = qgio%emit - Z (Z w, - qﬁf_f\fsold + ng .qﬁﬂﬂdez’l
3,500 MW Yk). G \h=1 ’ k=1

In procurement auctions with two-part bids, the market o () ]
clearing procedure distinguishes two aspects:stiwing rule 1€ remaining allowance budget that an agent has at his
and thesettlement rulg11]. The scoring rule defines how todisposal at timet (day of the yeary) is divided by the
compare bids and the settlement rule determines paymefgnaining days for which the allowances were issued in order
In the balancing market developed here, bids are compaf@d-alculate a daily budget. This budget is subtracted frioen t
solely on the basis of capacity bid prices, i.e. the bids wiflowance quantity needed for power generation, thustiagul
the lowest capacity bid price are considered first for hgdidn the bid quantity that agent submits to the C© market
capacity in reserve, until demand is met. If minute resenfP€rator. In consequence, if an agent's budget for the eurre
is actually needed for frequency control on the day of delifl@y is larger than the need for allowances, his bid quantity
ery, deployment is decided among those bids that had b&¥fomes negative, which corresponds to a selling bid.

successful on the trading day. A merit order is constructed COs,bud
based on the energy price only, and bids with lowest energy gCOM — ¢ Oz emit _ % (8)
ts ) —t—

prices are deployed first, until demand is met. Payments both
for holding capacity in reserve and for delivering energy fo 2ii the deployment of minute reserve becomes necessary, thiklwaoour
regulating purposes are based on the respective bid prices. day after trading on the balancing power market. For saiyliit is

; umed that minute reserve quantities actually deployesiraaly known on
These scoring and settlement rules both correspond to ﬁi trading day. In real-world practice, only around 2 % ajqured capacity

specifications set by German regulation [10]. is actually deployed [10], so these quantities are nedégib
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Bids on the CQ allowance market contain a volume ofConsequently, he aims at attaining a profit at least as high as
allowance? that is offered or asked, a bid price and thée could have achieved through selling allowances.
compliance periodop) for which the allowance should be Agents learn strategies separately for the day-ahead and
valid (as no speculation is considered, the compliancegési for the balancing power market. In the implementation, they
always equal to the current period). Buying bids have pasitihave individual instances of the learning algorithm forkeac
volumes, and selling offers have negative volumes. Eachtagef the two markets. Moreover, strategies for each bidding
submits one single bid on the allowance market at tifday block on the balancing power market and for each hour on
of the yeary), representing his daily allowance requirement ahe day-ahead market are learned separately. Opportwsty ¢
surplus which is calculated for the whole portfolio of powebetween the two electricity markets only occur for powenpla

plants he owns. types that are suitable for delivering minute reserve power
Power output from all other plants can consequently only be
b O*M = (plP*M g S ep) (9) bid on the day-ahead market, and opportunity costs from the

— . balancing power market are not considered for these plants.
The CG, emission allowance market is modeled as a seale . . , X
. . . he behavioral representation of the agents’ search fdit pro
bid double auction. Demand and supply bids are summed upto .~ .”° A ) )
: : aximizing strategies is modeled with Q-learning [14]. For
form supply and demand functions in the same way as on A7s learning algorithm, differerdtateshave to be defined. In
day-ahead electricity market, and the uniform market abgar gag ' '

price is determined by the intersection of both curves. Ag ththe model presented here, states are based on bid prices and

i . . . trading success. Bid prices can be categorized as low (lower
allocation, a maximum of social welfare is reached.

The remaining allowance budget is updated at the emlan or equal to one third of the maximum admissible bid

o cac wading cay for th foowg iy The amoun oo 18N (0L hn or e oo e of e
allowances used for emitted GQquantities ¢©92 ™ are P gp

. .can further be categorized as marginal or intra-margimal, i
subtracted from the current budget, and resulting tradl%. : . .
CO2M.res " . ich case it was successful, or as extra-marginal for a bid
volumesq Tes (positive for bought allowances, nega‘uvet o 7 .
. . . hat was not successful. All combinations of bid prices and
for sold volumes) are added to it. The budget at time 0 is : . . .
the initial allowance quantity issued for yegs success form the six states that are differentiated in thm. o
Reinforcementsz that are fed back to the update function of
the learning algorithm are calculated for both power market

q 9% = g 0P 51.02’””“ +q P (10)  after all markets have cleared on the current trading dagy Th
are based on the profit earned on the respective market.
with COxbud _ ™, COs init (11) In order to fagilitate setting initial Q—valu_es for the Ieisng
0,9 Y:9 algorithms, reinforcements are set relative to the maximum

G possible profitz%* that an agent can earn on the market.

Agents do not act strategically on the market for £OConsequently, the range of possible reinforcements isatees
emission allowances — they do not set bidding strategigs all learning tasksd < R < 1; initial Q-values are set to
through reinforcement learning. However, the costs irelirr ), = 1. Maximum profits depend on variable cost§” of
from allowance prices influence trading strategies on thge power plant deployed, and differ across plants.

electricity markets, as specified in the following section. Most generator agents own a portfolio of power plants over
which they can maximize profits. At the same time, bids are
E. Market Interrelations set and learned separately for each power plant. Consdyguent

The three markets that form the electricity sector simatati € reinforcement for learning the bidding strategy of one
model are interrelated through the agents’ bidding stresed plant should contain some mformatlon about the pe_rforreanc
power generator has the choice to bid his generating ceypa&f the wh_ole portfollo.. The influence of the_ pc_)rtfollo _proflt
on the day-ahead or on the balancing market (for thoS8 the reinforcement is set through tpertfolio mtegranon_ .
plants that fulfill the technical requirements to delivemate Parameter). Throughout the simulations presented here, it is
reserve), and has to trade off between these two optioﬁgf‘_tow = 0.5. This means that half of the reinforcement is
After market clearing on the first market, an agent can bfffined through the payoff eamed from the power plant for
his remaining unsold capacity on the second market. Throu§Rich the strategy is learned, and half of it is given by the
varying the bid quantity on the day-ahead market, agents dafffformance of the agent's whole portfolio.
influence and optimize their joint strategy on both eledtric

markets. th’,?’zg\/[ =(1—1)- Wﬁ;‘f‘; ﬂfg‘Mm”

While optimizing their supply bids, agents consider oppor- D TI'DAAI/ DAM,maz (12)
tunity costs that they could have achieved on the other rharke o G hbg g
if they had sold their capacity there. Prices for carbon idiex Gi

emission allowances are also included into the reinforeceme with
as opportunity costs. A generator would always have the

opportunity to solely sell certificates, thereby realizangrofit. |\ pivria Spav var  BPMopp  CO2M.opp
Trh,i,g = qh,i,g' h —cC " “hyi,g ~ “hyi,g i
31 EUA (European Allowance) allows for the emission of 1t of £O (13)
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about installed capacity. The four dominant players in the
wf;]‘/[’m“ =qps- pbAMmaz_ var (14) German power market (E.ON AG, RWE Power AG, Vattenfall

Europe AG and EnBW Kraftwerke AG) are represented in
more detail, and further players are introduced so that the
overall installed capacity and the proportions of différen
generation technologies (coal-fired, gas-fired, hydro) ete
cCO2M opp _ pCO2M [ CO2,emit (16) properly represented. Within the power plant portfolio oo

By t(h LURN .
e " e generator, all plants using the same fuel or technology are

The reinforcement for trading on the balancing power magypsumed under one generating unit, and average efficgencie
ket is defined in a similar manner as on the day-ahead markgla assumed for these units. The resulting merit order of all
If no minute reserve energy is actually deployed for freqyen power plants is depicted in Figure 5.
regulation, profits are only defined by capacity prices and no 0 system's total load data provided by tbmion for

load co;ts ifolc) over the number of hours per bi.dding blockhe Co-Ordination of Transmission of Electricif CTE)
|l € k|, i.e. the cost for keeping the power plant in a stand-Ry,ntitutes the data input for the demand side. Those days
state. If minute reserve is deployed, no-load costs do nafroc¢, \vhich the system's total load is published (i.e. every

and the profit gained from the energy price minus the variabjg 4 Wednesday of a month) are simulated, and resulting

cost has to be added. For simplicity, only the first Aoj the Worices are compared to empirically observed prices at the
cases is formulated below. For the calculationmd¥:maz,

! i ) European Energy Exchange (EEX) spot market and at the
only capacity prices are considered. German balancing power markets in the year 2006. As the real-
world markets may show extraordinary prices on the specific

cﬁ];ﬁ[,opp = I(g,MR) - pé%(’];])ﬂ,cap . th"?,J\; (15)

RPPM = (1) - mf Wfvam“’” simulated days, additional average daily courses of poges
Zci (g, MR) _Wﬁlzjy fé»M,maz (17) all workgjays qf the same month are calculated and compared
SRVR to the simulation outcomes.
>c, 1(9,MR) In all simulations, agents apply Q-learning with a learning
with rate ofa = 0.5, a discount rate ofy = 0.9 and anes-greedy

action selection rule witlk = 0.2. Simulations are run over
pavopp 1,300 iterations, and results are averaged over ten siionlat
kg runs with different random number seeds. The outcome of one
(18)  simulation run is defined as the average market price over the
last 365 iterations.
Wf;’M’mM - Qﬁfyt . pBPMcapsmaz _ cnole | e | (19) Figures 1 and 2 show examples for simulation results. Con-
’ ' tinuous lines plot the simulation outcome for the simulatag
DAM,opp __BPMycap | poau 20 of the month; dashed lines plgt the empirically observedq&ri
k,i,g Qk,i,g Z h (20)  of the same day, and dotted lines represent average priees ov
hek all workdays of the specific month. Top figures display hourly
1. VALIDATION re_sults on the day-ahea_d market, where empirically obderve
' prices correspond to prices for hourly contracts at the EEX
Empirical validation of agent-based simulation models imugpot market. Bottom figures show results from the balancing
take place on two levels: micro-validationrequires a detailed power market for the six bidding blocks, and empirically
analysis of which behavioral representation is best suted observed prices are averaged over the prices publishedeby th
modeling agents engaged in daily repeated electricityirtcad four balancing market operatats.
In this context, numerous tests of different learning &tbars Prices in summer and transitional (spring/fall) months (se
(Q-learning, the learning model formulated by Erev and Royample in Figure 1) are quite closely reproduced by the
[15], and Experience-Weighted Attraction) have been edrrisimylation model. Prices in winter months (see example in
out by the authors. This procedure will not be reported hergjgyre 2), however, show larger deviation between simuati
On the basis of a properly micro-validated learning modedytcomes and real-world prices. In some hours, prices even
the next validation step can be proceeded. Thacro- exceed 100 EUR/MWh; as the agents’ action domains in the
validation entails the analysis of macro variables that resuWfmylations only allow for bid prices up to 100 EUR/MWHh,
from the agents’ interaction. Here, market prices that coote prices above this level cannot be replicated by constructio
of simulations with the presented model, run with data inpg§ the model. Enlarging the action domain might be a way
that realistically represents the German electricity @ea@re (o ensure that prices higher than 100 EUR/MWh can also
compared to empirically observed prices in order to verify he simulated. However, a sensitivity analysis reveals that
real-world day-ahead and balancing power market resulis ca
be properly reproduced with the simulation model. 4In 2006, bidding blocks were defined differently across ther balancing
In the following, the model is run with data input thatower markets existing in Germany. For comparison with the sited| data,

characterizes the German electricity industry during thal-a average prices for the six defined bidding blocks are intatpd. Since
. December 2006, all four transmission system operators impleorenjoint

ySiS periOd o_f 2006. The indUStry,S power plant portfolio I$ninute reserve procurement auction with six bidding blocksaétp those in
represented in an aggregate way, based on published dataimulation model.

BPM __ _BPM,cap,sold BPM, cap nolc
Mg = Ghig B — b e k| e
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Fig. 1. Example results for September 2006: simulated andvedd prices Fig. 2. Example results for February 2006: simulated andwesald prices
on the day-ahead (top) and balancing power market (bottom) on the day-ahead (top) and balancing power market (bottom)

imulati t i itive t ds the diefimit can be concluded from a comparison of prices in simulations
simulation oulcomes are gurte sensilive towards the ' \gith and without emissions trading (not reported here).

of the agents’ action domain. If the range of possible bi
150 EUR/MWh, average yearly prices rise by 6.2, 12.5, and ELECTRICITY PRICES

0 L
31.3%, .respecmve!y. o The agent-based electricity sector simulation model pre-
The simulated prices observed on the two electricity marketanied in this paper can be used as a means of testing

are a consequence of agents bidding subsequently on thgg@ ent market structures and market mechanisms in deder
markets and on the CQallowance exchange, and optimizingg, 5| ate their influence on power trading outcomes, esbecia
their strategies in face of market interrelations. Demam on resulting market prices. Among the scenarios that can be
balancing power market, i.e. tendered minute reserve @8pacgjm jated with this model, one problem of interest in the
is equal for all bidding blocks. This market is cleared firStgerman electricity sector is exemplified in the following.
and the day-ahead market is operated subsequently. As thg, sccordance with many other studies about European
available supply and demand quantities in the balancingpovgectricity markets, an expertise by order of the German
market are the same in every hour, differences in pricggqeration of Industrial Energy Consumeromes to the
between the bidding blocks can only result from the inclosiqoncysion that electricity markets in continental Eurape
of opportunity costs into the agents’ reasoning. not structured in a sufficiently competitive way. As regards
The simulation outcome on the balancing power markgie interplay between the day-ahead electricity market and
shows characteristic daily courses of prices, in which cépa the balancing power market, it furthermore concludes thet t
prices in bidding blocks 3 and 4 — and 5 in winter monthgtter particularly offers potential for market power etiem
— are considerably higher than those in the nocturnal bgldighrough subtracting capacity from wholesale trading [16].
blocks. Similar characteristics can be observed in the-real |n real-world practice during the year 2006, the procured
world balancing power markets in Germany, although thsositive balancing power capacity was nearly 4,000 MW
high prices in the fifth bidding block that occur in mosfor primary and secondary reserves, and between 3,150 and
winter months are not reproduced by the simulation mode;420 MW for minute reserve. In the model, procured minute
However, the observation that the basic characteristidstfa® reserve capacity is set to 3,500 MW, while primary and
order of magnitude of prices for day-ahead contracts and f$condary reserve procurement is not considered. In order
balancing power are well simulated is an encouraging restit analyze whether and to what extent the effect assumed
and strengthens confidence in the model validity. in the expertise actually occurs, the amount of tendered
The effect of CQ emissions trading on simulated pricesninute reserve on the balancing power market is varied from
is roughly comparable to that observed in the real market;12000 MW to 13,000 MW, and simulated prices are compared.
large share of opportunity costs are successfully passéd on Classical electricity market models that assume no stiateg
electricity bids, which ultimately raises electricity ges. This bidding would also suggest that market prices rise when
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demand increases. This is directly explained by the merit Varying Tendered Balancing Capaciy
order: if load is high, more expensive generating units rbest 100

deployed in order to satisfy demand. Thus, only in thosescase
in which bidders can successfully raise market prices to an
extent that cannot be explained by the underlying costtstreic
alone, it can be concluded that there exists an increased
“potential for market power exertion”.

On the balancing power market, which is cleared first,
7,000 MW of hydroelectric capacity is available at a no-load ‘ ‘
costs of 0 EUR/MW per hour and variable (operating) costs of 1000 3000 5000 7000 9000 11000 13000
1.5 EUR/MWh. Additional demand can be satisfied with the Tendered Balancng Copacty MY
available capacity of the next expensive gas-fired powertpla
(no-load costs 100 EUR/MW+h, variable costs 45 EUR/MWh) ]
in all simulated scenarios of tendered balancing capacity.
Expensive oil-fired power plants do not need to be deployed
for minute reserve purposes, unless they underbid lower cos I |
hydroelectric or gas-fired generating capacity.

The merit order shift on the day-ahead market, which is sor ]
cleared secondly, partly depends on trading results on the /
ba_llancing power market_. If Ieast-cost_plants are deployed f _ O e 0 500 7000 9000 11500 13500
minute reserve, the variable generating cost of the ladt uni Tendered Balancing Capacity [MW]
necessary to satisfy demand is 4.5 EUR/MWh in a few hours ) )
of very low demand, 20-22 EUR/MWH in the largest part cf %%, e average prices on e day-ahead (or) i poer
all hours, and 45 EUR/MWh in hours of very high demand
and high tendered minute reserve. _ . .

) . . . Varying Tendered Balancing Capacity

The simulation outcomes confirm the effect assumed in 2006, Q-Learning
the expertise. Figure 3 (top) shows simulated prices on the 100 ‘ ‘ ‘ ‘ ‘ %
day-ahead market as a function of tendered minute reserve
guantities. Over the simulated range, a nearly linearicglat
between balancing power gquantities and resulting prices ca
be observed. The slope of the curve is steeper for cases
with higher demand — such as in winter months — than in
times of low demand (Figure 3 displays the two months with
the highest and lowest slope for each market). The effect of B b e ——
varying tendered minute reserve capacity is stronger on the 0 ‘ , Balancing Capacity 13,000 , 0
balancing power market. As depicted in Figure 3 (bottom), ° 0 oo
higher tendered capacities lead to considerably higheutain
reserve prices. The functional relation is weakly concavBig. 4. Day-ahead market prices for different tendered mimeterve
Yearly average prices increase from less than 15 up to m@Hgntities. sorted by total demand
than 90 EUR/MWh, which corresponds to a sextupling of

prices from 1,000 to 13,000 MW of tendered reserve capacity.

The fact that bri d t onlv d hen tend (J:igure 4 shows the prices resulting on the day-ahead market
1he fact that prices do not only decrease when tendelfedl o opservations (i.e. for all 12*24 simulated hours)ddor
minute reserve quantities rise above the level of 7,000 M

ts that the d : ¢ i the balanci rying tendered minute reserve guantities. Observatioas
suggests that the dynamics of competition on the balancipgye by demand quantities in the corresponding hours. What
power market are more influenced by the supply/demand raj

. 8n be observed here is that price increases resulting from
or oppqrtumty costs from th_e day-ahead market t_ha'f‘ by t fevated tendered balancing power quantities are stranger
underlying cost structure. This can be seen as an indicator

. . X ~high demand hours and have a negligible effect in hours of
an mcreasmg.r.narket power potenual when tendered mml{}gqry low demand. For very high demand and high tendered
reserve quantities are elevated. Higher demand on thedaal%
ing power market reduces supply-side competition, so age
are less forced to bid competitively, leading to higher reark
prices. Besides, if more capacity is committed on the batanc
power market, less capacity is available on the day-ahead V. CONCLUSION

market, leading to the same effects on this market, too. Asin this contribution, an agent-based simulation model rep-
opportunity costs are taken into account, high prices on oresenting the core features of the German electricity itmdus
market tend to result in higher prices on the other markeis Ths presented. The model comprises a day-ahead market for
effect especially occurs on the balancing power market,ias ihourly electricity delivery contracts, a procurement nedrk

stronger influenced by the day-ahead market than vice versar. positive minute reserve and a market for £@mission
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lancing capacity, prices even climb up close to the maximu
BBssibIe price of 100 EUR/MWh.
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allowances. Simulated prices from this model are close t{3] A. Weidlich and D. Veit, “A Critical Survey of Agent-BaseWholesale
real-world prices in many months of the year 2006, both on
the day-ahead market (compared to EEX prices) and on t
balancing power market (compared to prices on the balancing
power markets operated in Germany). Besides, the influent8
of CO, emissions trading on electricity prices is comparable

to observations from real-world markets.

The presented model can be used to analyze a variety 6i
possible market structures and market mechanisms with the
aim of finding good market designs that take into account
market interrelations and other aspects of real-world powd’]
systems. Analyses of this kind have been conducted by the
authors, and additional scenarios are currently developed
Results from these simulations demonstrate the usefulsfess (8l
the agent-based simulation model presented here. One &xamp
presented in this paper is the influence of tendered balgncing)
capacity on prices on both simulated electricity markets.
Considerable rises in prices can be observed for increasj
minute reserve procurement quantities; in high demandshour
this leads to a considerable potential for agents to driviketa [11]
prices up. The model presented here should be further applie
to test alternative market designs in order to find the best
options of preventing generators from exerting market powé'2]

APPENDIX

Merit Order Curve of the Basic Scenario
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